Datensatz: F0 estimation for bioacoustics: A benchmark/training dataset of non-human vocalisations with annotated frequency contours
Datum der Erstveröffentlichung
Autor:innen
Andere Beitragende
Repositorium der Erstveröffentlichung
Version des Datensatzes
DOI (Link zu den Daten)
Link zur Lizenz
Angaben zur Forschungsförderung
U.S. National Science Foundation (NSF): IOS1755089
Swiss National Science Foundation: PCEFP1_186841
Projekt
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationsstatus
Zusammenfassung
The fundamental frequency (F0) is a key parameter for characterising structures in vertebrate vocalisations, for instance defining vocal repertoires and their variations at different biological scales (e.g., population dialects, individual signatures). However, the task is too laborious to perform manually, and its automation is complex. Despite significant advancements in the fields of speech and music for automatic F0 estimation, similar progress in bioacoustics has been limited. To address this gap, we compile and publish a benchmark dataset of over 250,000 calls from 13 taxa, each paired with ground truth F0 values (each call are associated a series of time x frequency points delimitating its frequency contour). These vocalisations range from high to low SNR, from infra-sounds to ultra-sounds, from high to low harmonicity, and some include non-linear phenomena. This dataset allows to train supervised and/or self-supervised models in estimating F0 values (similarly to CREPE or PESTO for instance). Also, the provided ground truth allows to evaluate the performance and compare different algorithms on these signals (see the associated manuscript for a first benchmark and baseline). Pretrained models and scripts to train or evaluate models on this dataset are available on a separate github repository.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Link zu zugehöriger Publikation
Zitieren
ISO 690
BEST, Paul, Marcelo ARAYA-SALAS, Axel G. EKSTRÖM, Bárbara FREITAS, Frants H. JENSEN, Arik KERSHENBAUM, Adriano R. LAMEIRA, Kenna D. S. LEHMANN, Pavel LINHART, Robert C. LIU, Malavika MADHAVAN, Andrew MARKHAM, Marie A. ROCH, Holly ROOT-GUTTERIDGE, Martin ŠÁLEK, Grace SMITH-VIDAURRE, Ariana STRANDBURG-PESHKIN, Megan R. WARREN, Matthew WIJERS, Ricard MARXER, 2025. F0 estimation for bioacoustics: A benchmark/training dataset of non-human vocalisations with annotated frequency contoursBibTex
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/73795"> <dc:contributor>Šálek, Martin</dc:contributor> <dc:creator>Root-Gutteridge, Holly</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Freitas, Bárbara</dc:contributor> <dc:creator>Smith-Vidaurre, Grace</dc:creator> <dc:contributor>Ekström, Axel G.</dc:contributor> <dc:contributor>Marxer, Ricard</dc:contributor> <dcterms:abstract>The fundamental frequency (F0) is a key parameter for characterising structures in vertebrate vocalisations, for instance defining vocal repertoires and their variations at different biological scales (e.g., population dialects, individual signatures). However, the task is too laborious to perform manually, and its automation is complex. Despite significant advancements in the fields of speech and music for automatic F0 estimation, similar progress in bioacoustics has been limited. To address this gap, we compile and publish a benchmark dataset of over 250,000 calls from 13 taxa, each paired with ground truth F0 values (each call are associated a series of time x frequency points delimitating its frequency contour). These vocalisations range from high to low SNR, from infra-sounds to ultra-sounds, from high to low harmonicity, and some include non-linear phenomena. This dataset allows to train supervised and/or self-supervised models in estimating F0 values (similarly to CREPE or PESTO for instance). Also, the provided ground truth allows to evaluate the performance and compare different algorithms on these signals (see the associated manuscript for a first benchmark and baseline). Pretrained models and scripts to train or evaluate models on this dataset are available on a separate github repository.</dcterms:abstract> <dc:contributor>Markham, Andrew</dc:contributor> <dc:creator>Kershenbaum, Arik</dc:creator> <dc:creator>Markham, Andrew</dc:creator> <dc:contributor>Linhart, Pavel</dc:contributor> <dc:creator>Marxer, Ricard</dc:creator> <dc:contributor>Root-Gutteridge, Holly</dc:contributor> <dc:creator>Wijers, Matthew</dc:creator> <dc:contributor>Best, Paul</dc:contributor> <dc:creator>Araya-Salas, Marcelo</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-07-03T11:05:17Z</dcterms:available> <dc:creator>Best, Paul</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-07-03T11:05:17Z</dc:date> <dc:creator>Freitas, Bárbara</dc:creator> <dc:contributor>Roch, Marie A.</dc:contributor> <dc:creator>Madhavan, Malavika</dc:creator> <dc:creator>Linhart, Pavel</dc:creator> <dc:contributor>Warren, Megan R.</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71914"/> <dcterms:title>F0 estimation for bioacoustics: A benchmark/training dataset of non-human vocalisations with annotated frequency contours</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71914"/> <dc:contributor>Strandburg-Peshkin, Ariana</dc:contributor> <dc:contributor>Liu, Robert C.</dc:contributor> <dc:contributor>Madhavan, Malavika</dc:contributor> <dc:creator>Warren, Megan R.</dc:creator> <dc:creator>Lehmann, Kenna D. S.</dc:creator> <dc:creator>Strandburg-Peshkin, Ariana</dc:creator> <dc:creator>Roch, Marie A.</dc:creator> <dc:contributor>Wijers, Matthew</dc:contributor> <dcterms:issued>2025</dcterms:issued> <dcterms:isReferencedBy>10.1080/09524622.2025.2500380</dcterms:isReferencedBy> <dc:creator>Ekström, Axel G.</dc:creator> <dc:contributor>Kershenbaum, Arik</dc:contributor> <dc:contributor>Jensen, Frants H.</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/73795"/> <dc:contributor>Smith-Vidaurre, Grace</dc:contributor> <dcterms:created rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-05-08T08:19:53Z</dcterms:created> <dc:creator>Liu, Robert C.</dc:creator> <dc:contributor>Araya-Salas, Marcelo</dc:contributor> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="https://creativecommons.org/publicdomain/zero/1.0/legalcode"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Šálek, Martin</dc:creator> <dc:contributor>Lameira, Adriano R.</dc:contributor> <dc:contributor>Lehmann, Kenna D. S.</dc:contributor> <dc:rights>Creative Commons Zero v1.0 Universal</dc:rights> <dc:creator>Jensen, Frants H.</dc:creator> <dc:creator>Lameira, Adriano R.</dc:creator> </rdf:Description> </rdf:RDF>