Publikation:

Bioacoustic fundamental frequency estimation: a cross-species dataset and deep learning baseline

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2025

Autor:innen

Best, Paul
Araya-Salas, Marcelo
Ekström, Axel G.
Freitas, Bárbara
Jensen, Frants H.
Kershenbaum, Arik
Lameira, Adriano R.
Marxer, Ricard
et al.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

U.S. National Science Foundation (NSF): OISE1853934

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Bioacoustics. Taylor & Francis. ISSN 0952-4622. eISSN 2165-0586. Verfügbar unter: doi: 10.1080/09524622.2025.2500380

Zusammenfassung

The fundamental frequency (F0) is a key parameter for characterising structures in vertebrate vocalisations, for instance defining vocal repertoires and their variations at different biological scales (e.g. population dialects, individual signatures). However, the task is too laborious to perform manually, and its automation is complex. Despite significant advancements in the fields of speech and music for automatic F0 estimation, similar progress in bioacoustics has been limited. To address this gap, we compile and publish a benchmark dataset of over 250,000 calls from 14 taxa, each paired with ground truth F0 values. These vocalisations range from infra-sounds to ultra-sounds, from high to low harmonicity, and some include non-linear phenomena. Testing different algorithms on these signals, we demonstrate the potential of neural networks for F0 estimation, even for taxa not seen in training, or when trained without labels. Also, to inform on the applicability of algorithms to analyse signals, we propose spectral measurements of F0 quality which correlate well with performance. While current performance results are not satisfying for all studied taxa, they suggest that deep learning could bring a more generic and reliable bioacoustic F0 tracker, helping the community to analyse vocalisations via their F0 contours.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BEST, Paul, Marcelo ARAYA-SALAS, Axel G. EKSTRÖM, Bárbara FREITAS, Frants H. JENSEN, Arik KERSHENBAUM, Adriano R. LAMEIRA, Ariana STRANDBURG-PESHKIN, Ricard MARXER, 2025. Bioacoustic fundamental frequency estimation: a cross-species dataset and deep learning baseline. In: Bioacoustics. Taylor & Francis. ISSN 0952-4622. eISSN 2165-0586. Verfügbar unter: doi: 10.1080/09524622.2025.2500380
BibTex
@article{Best2025-06-02Bioac-73543,
  title={Bioacoustic fundamental frequency estimation: a cross-species dataset and deep learning baseline},
  year={2025},
  doi={10.1080/09524622.2025.2500380},
  issn={0952-4622},
  journal={Bioacoustics},
  author={Best, Paul and Araya-Salas, Marcelo and Ekström, Axel G. and Freitas, Bárbara and Jensen, Frants H. and Kershenbaum, Arik and Lameira, Adriano R. and Strandburg-Peshkin, Ariana and Marxer, Ricard}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/73543">
    <dc:contributor>Ekström, Axel G.</dc:contributor>
    <dc:creator>Lameira, Adriano R.</dc:creator>
    <dc:creator>Jensen, Frants H.</dc:creator>
    <dc:contributor>Jensen, Frants H.</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/73543"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Best, Paul</dc:contributor>
    <dc:contributor>Kershenbaum, Arik</dc:contributor>
    <dcterms:abstract>The fundamental frequency (F0) is a key parameter for characterising structures in vertebrate vocalisations, for instance defining vocal repertoires and their variations at different biological scales (e.g. population dialects, individual signatures). However, the task is too laborious to perform manually, and its automation is complex. Despite significant advancements in the fields of speech and music for automatic F0 estimation, similar progress in bioacoustics has been limited. To address this gap, we compile and publish a benchmark dataset of over 250,000 calls from 14 taxa, each paired with ground truth F0 values. These vocalisations range from infra-sounds to ultra-sounds, from high to low harmonicity, and some include non-linear phenomena. Testing different algorithms on these signals, we demonstrate the potential of neural networks for F0 estimation, even for taxa not seen in training, or when trained without labels. Also, to inform on the applicability of algorithms to analyse signals, we propose spectral measurements of F0 quality which correlate well with performance. While current performance results are not satisfying for all studied taxa, they suggest that deep learning could bring a more generic and reliable bioacoustic F0 tracker, helping the community to analyse vocalisations via their F0 contours.</dcterms:abstract>
    <dc:creator>Strandburg-Peshkin, Ariana</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-06-10T07:25:09Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Araya-Salas, Marcelo</dc:creator>
    <dc:contributor>Araya-Salas, Marcelo</dc:contributor>
    <dc:contributor>Lameira, Adriano R.</dc:contributor>
    <dc:creator>Best, Paul</dc:creator>
    <dc:contributor>Marxer, Ricard</dc:contributor>
    <dc:creator>Ekström, Axel G.</dc:creator>
    <dc:creator>Marxer, Ricard</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:title>Bioacoustic fundamental frequency estimation: a cross-species dataset and deep learning baseline</dcterms:title>
    <dcterms:issued>2025-06-02</dcterms:issued>
    <dc:contributor>Freitas, Bárbara</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-06-10T07:25:09Z</dc:date>
    <dc:creator>Freitas, Bárbara</dc:creator>
    <dc:contributor>Strandburg-Peshkin, Ariana</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Kershenbaum, Arik</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Online First: Zeitschriftenartikel, die schon vor ihrer Zuordnung zu einem bestimmten Zeitschriftenheft (= Issue) online gestellt werden. Online First-Artikel werden auf der Homepage des Journals in der Verlagsfassung veröffentlicht.
Diese Publikation teilen