Publikation: Bioacoustic fundamental frequency estimation: a cross-species dataset and deep learning baseline
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The fundamental frequency (F0) is a key parameter for characterising structures in vertebrate vocalisations, for instance defining vocal repertoires and their variations at different biological scales (e.g. population dialects, individual signatures). However, the task is too laborious to perform manually, and its automation is complex. Despite significant advancements in the fields of speech and music for automatic F0 estimation, similar progress in bioacoustics has been limited. To address this gap, we compile and publish a benchmark dataset of over 250,000 calls from 14 taxa, each paired with ground truth F0 values. These vocalisations range from infra-sounds to ultra-sounds, from high to low harmonicity, and some include non-linear phenomena. Testing different algorithms on these signals, we demonstrate the potential of neural networks for F0 estimation, even for taxa not seen in training, or when trained without labels. Also, to inform on the applicability of algorithms to analyse signals, we propose spectral measurements of F0 quality which correlate well with performance. While current performance results are not satisfying for all studied taxa, they suggest that deep learning could bring a more generic and reliable bioacoustic F0 tracker, helping the community to analyse vocalisations via their F0 contours.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BEST, Paul, Marcelo ARAYA-SALAS, Axel G. EKSTRÖM, Bárbara FREITAS, Frants H. JENSEN, Arik KERSHENBAUM, Adriano R. LAMEIRA, Ariana STRANDBURG-PESHKIN, Ricard MARXER, 2025. Bioacoustic fundamental frequency estimation: a cross-species dataset and deep learning baseline. In: Bioacoustics. Taylor & Francis. ISSN 0952-4622. eISSN 2165-0586. Verfügbar unter: doi: 10.1080/09524622.2025.2500380BibTex
@article{Best2025-06-02Bioac-73543, title={Bioacoustic fundamental frequency estimation: a cross-species dataset and deep learning baseline}, year={2025}, doi={10.1080/09524622.2025.2500380}, issn={0952-4622}, journal={Bioacoustics}, author={Best, Paul and Araya-Salas, Marcelo and Ekström, Axel G. and Freitas, Bárbara and Jensen, Frants H. and Kershenbaum, Arik and Lameira, Adriano R. and Strandburg-Peshkin, Ariana and Marxer, Ricard} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/73543"> <dc:contributor>Ekström, Axel G.</dc:contributor> <dc:creator>Lameira, Adriano R.</dc:creator> <dc:creator>Jensen, Frants H.</dc:creator> <dc:contributor>Jensen, Frants H.</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/73543"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Best, Paul</dc:contributor> <dc:contributor>Kershenbaum, Arik</dc:contributor> <dcterms:abstract>The fundamental frequency (F0) is a key parameter for characterising structures in vertebrate vocalisations, for instance defining vocal repertoires and their variations at different biological scales (e.g. population dialects, individual signatures). However, the task is too laborious to perform manually, and its automation is complex. Despite significant advancements in the fields of speech and music for automatic F0 estimation, similar progress in bioacoustics has been limited. To address this gap, we compile and publish a benchmark dataset of over 250,000 calls from 14 taxa, each paired with ground truth F0 values. These vocalisations range from infra-sounds to ultra-sounds, from high to low harmonicity, and some include non-linear phenomena. Testing different algorithms on these signals, we demonstrate the potential of neural networks for F0 estimation, even for taxa not seen in training, or when trained without labels. Also, to inform on the applicability of algorithms to analyse signals, we propose spectral measurements of F0 quality which correlate well with performance. While current performance results are not satisfying for all studied taxa, they suggest that deep learning could bring a more generic and reliable bioacoustic F0 tracker, helping the community to analyse vocalisations via their F0 contours.</dcterms:abstract> <dc:creator>Strandburg-Peshkin, Ariana</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-06-10T07:25:09Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Araya-Salas, Marcelo</dc:creator> <dc:contributor>Araya-Salas, Marcelo</dc:contributor> <dc:contributor>Lameira, Adriano R.</dc:contributor> <dc:creator>Best, Paul</dc:creator> <dc:contributor>Marxer, Ricard</dc:contributor> <dc:creator>Ekström, Axel G.</dc:creator> <dc:creator>Marxer, Ricard</dc:creator> <dc:language>eng</dc:language> <dcterms:title>Bioacoustic fundamental frequency estimation: a cross-species dataset and deep learning baseline</dcterms:title> <dcterms:issued>2025-06-02</dcterms:issued> <dc:contributor>Freitas, Bárbara</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-06-10T07:25:09Z</dc:date> <dc:creator>Freitas, Bárbara</dc:creator> <dc:contributor>Strandburg-Peshkin, Ariana</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:creator>Kershenbaum, Arik</dc:creator> </rdf:Description> </rdf:RDF>