Analytic continuations of log-exp-analytic germs

Thumbnail Image
Date
2019
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published
Published in
Transactions of the American Mathematical Society (TRAN) ; 371 (2019), 7. - pp. 5203-5246. - ISSN 0002-9947. - eISSN 1088-6850
Abstract
We describe maximal, in a sense made precise, L-analytic continuations of germs at +∞ of unary functions definable in the o-minimal structure Ran,exp on the Riemann surface L of the logarithm. As one application, we give an upper bound on the logarithmic-exponential complexity of the compositional inverse of an infinitely increasing such germ, in terms of its own logarithmic-exponential complexity and its level. As a second application, we strengthen Wilkie’s theorem on definable complex analytic continuations of germs belonging to the residue field Rpoly of the valuation ring of all polynomially bounded definable germs.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690KAISER, Tobias, Patrick SPEISSEGGER, 2019. Analytic continuations of log-exp-analytic germs. In: Transactions of the American Mathematical Society (TRAN). 371(7), pp. 5203-5246. ISSN 0002-9947. eISSN 1088-6850. Available under: doi: 10.1090/tran/7748
BibTex
@article{Kaiser2019Analy-40967.2,
  year={2019},
  doi={10.1090/tran/7748},
  title={Analytic continuations of log-exp-analytic germs},
  number={7},
  volume={371},
  issn={0002-9947},
  journal={Transactions of the American Mathematical Society (TRAN)},
  pages={5203--5246},
  author={Kaiser, Tobias and Speissegger, Patrick}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40967.2">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dcterms:title>Analytic continuations of log-exp-analytic germs</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dc:creator>Kaiser, Tobias</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/40967.2/1/Kaiser_2-15q9c6q8vthbb5.pdf"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/40967.2/1/Kaiser_2-15q9c6q8vthbb5.pdf"/>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40967.2"/>
    <dcterms:abstract xml:lang="eng">We describe maximal, in a sense made precise, L-analytic continuations of germs at +∞ of unary functions definable in the o-minimal structure R&lt;sub&gt;an,exp&lt;/sub&gt; on the Riemann surface L of the logarithm. As one application, we give an upper bound on the logarithmic-exponential complexity of the compositional inverse of an infinitely increasing such germ, in terms of its own logarithmic-exponential complexity and its level. As a second application, we strengthen Wilkie’s theorem on definable complex analytic continuations of germs belonging to the residue field R&lt;sub&gt;poly&lt;/sub&gt; of the valuation ring of all polynomially bounded definable germs.</dcterms:abstract>
    <dc:contributor>Kaiser, Tobias</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-04-09T12:59:48Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-04-09T12:59:48Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Speissegger, Patrick</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:issued>2019</dcterms:issued>
    <dc:contributor>Speissegger, Patrick</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Refereed
Yes

Version History

Now showing 1 - 2 of 2
VersionDateSummary
2*
2019-04-09 12:54:38
2017-12-19 14:42:05
* Selected version