Detection of Fragmented Rectangular Enclosures in Very-High-Resolution Remote Sensing Images

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2015
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Silvretta Historica - Kulturgeschichte grenzenlos erforschen und erleben
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
1. Januar 3000
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Submitted
Wird erscheinen in
Zusammenfassung

We develop an approach for detection of ruins of livestock enclosures in alpine areas captured by high-resolution remotely sensed images. These structures are usually of approximately rectangular shape and appear in images as faint fragmented contours in complex background. We address this problem by introducing a rectangularity feature that quantifies the degree of alignment of an optimal subset of extracted linear segments with a contour of rectangular shape. The rectangularity feature has high values not only for perfectly regular enclosures, but also for ruined ones with distorted angles, fragmented walls, or even a completely missing wall. Furthermore, it has zero value for spurious structures with less than three sides of a perceivable rectangle.
We show how the detection performance can be improved by learning a linear combination of the rectangularity and size features from just a few available representative examples and a large number of negatives. Our approach allowed detection of enclosures in the Silvretta Alps that were previously unknown.
A comparative performance analysis is provided. Among other features, our comparison includes the state-of-the-art features that were generated by pre-trained deep convolutional neural networks (CNN). The deep CNN features, though learned from a very different type of images, provided the basic ability to capture the visual concept of the livestock enclosures. However, our handcrafted rectangularity-size features showed considerably higher performance.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Object detection, incomplete rectangles, man-made structures, maximal cliques, rectangularity feature, deep CNN features
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690ZINGMAN, Igor, Dietmar SAUPE, Otavio PENATTI, Karsten LAMBERS, 2015. Detection of Fragmented Rectangular Enclosures in Very-High-Resolution Remote Sensing Images
BibTex
@article{Zingman2015Detec-32382.1,
  year={2015},
  title={Detection of Fragmented Rectangular Enclosures in Very-High-Resolution Remote Sensing Images},
  author={Zingman, Igor and Saupe, Dietmar and Penatti, Otavio and Lambers, Karsten}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/32382.1">
    <dc:contributor>Lambers, Karsten</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/32382"/>
    <dcterms:abstract xml:lang="eng">We develop an approach for detection of ruins of livestock enclosures in alpine areas captured by high-resolution remotely sensed images. These structures are usually of approximately rectangular shape and appear in images as faint fragmented contours in complex background. We address this problem by introducing a rectangularity feature that quantifies the degree of alignment of an optimal subset of extracted linear segments with a contour of rectangular shape. The rectangularity feature has high values not only for perfectly regular enclosures, but also for ruined ones with distorted angles, fragmented walls, or even a completely missing wall. Furthermore, it has zero value  for spurious structures with  less than three sides of a perceivable rectangle.&lt;br /&gt;We show how the detection performance can be improved by learning a linear combination of the rectangularity and size features from just a few available representative examples and a large number of negatives. Our approach allowed detection of enclosures in the Silvretta Alps that were previously unknown.&lt;br /&gt;A comparative performance analysis is provided. Among other features, our comparison includes the state-of-the-art features that were generated by pre-trained deep convolutional neural networks (CNN). The deep CNN features, though learned from a very different type of images, provided the basic ability to capture the visual concept of the livestock enclosures. However, our handcrafted rectangularity-size features showed considerably higher performance.</dcterms:abstract>
    <dc:contributor>Penatti, Otavio</dc:contributor>
    <dc:creator>Zingman, Igor</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-12-11T10:41:51Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-12-11T10:41:51Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Penatti, Otavio</dc:creator>
    <dc:creator>Lambers, Karsten</dc:creator>
    <dcterms:issued>2015</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Zingman, Igor</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/32382.1/1/fragmentedRectangularStructuresPreprint.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Saupe, Dietmar</dc:contributor>
    <dc:creator>Saupe, Dietmar</dc:creator>
    <dc:language>eng</dc:language>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/32382.1/1/fragmentedRectangularStructuresPreprint.pdf"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:title>Detection of Fragmented Rectangular Enclosures in Very-High-Resolution Remote Sensing Images</dcterms:title>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen

Versionsgeschichte

Gerade angezeigt 1 - 3 von 3
VersionDatumZusammenfassung
2017-08-02 08:24:22
2016-03-22 15:57:07
After a minor revision the article was accepted to IEEE Transactions on Geoscience and Remote Sensing
1*
2015-12-11 10:41:51
* Ausgewählte Version