Detection of Fragmented Rectangular Enclosures in Very-High-Resolution Remote Sensing Images

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2016
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
IEEE Transactions on Geoscience and Remote Sensing. 2016, 54(8), pp. 4580-4593. ISSN 0196-2892. eISSN 1558-0644. Available under: doi: 10.1109/TGRS.2016.2545919
Zusammenfassung

We develop an approach for the detection of ruins of livestock enclosures (LEs) in alpine areas captured by high-resolution remotely sensed images. These structures are usually of approximately rectangular shape and appear in images as faint fragmented contours in complex background. We address this problem by introducing a rectangularity feature that quantifies the degree of alignment of an optimal subset of extracted linear segments with a contour of rectangular shape. The rectangularity feature has high values not only for perfectly regular enclosures but also for ruined ones with distorted angles, fragmented walls, or even a completely missing wall. Furthermore, it has a zero value for spurious structures with less than three sides of a perceivable rectangle. We show how the detection performance can be improved by learning a linear combination of the rectangularity and size features from just a few available representative examples and a large number of negatives. Our approach allowed detection of enclosures in the Silvretta Alps that were previously unknown. A comparative performance analysis is provided. Among other features, our comparison includes the state-of-the-art features that were generated by pretrained deep convolutional neural networks (CNNs). The deep CNN features, although learned from a very different type of images, provided the basic ability to capture the visual concept of the LEs. However, our handcrafted rectangularity-size features showed considerably higher performance.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690ZINGMAN, Igor, Dietmar SAUPE, Otavio A. B. PENATTI, Karsten LAMBERS, 2016. Detection of Fragmented Rectangular Enclosures in Very-High-Resolution Remote Sensing Images. In: IEEE Transactions on Geoscience and Remote Sensing. 2016, 54(8), pp. 4580-4593. ISSN 0196-2892. eISSN 1558-0644. Available under: doi: 10.1109/TGRS.2016.2545919
BibTex
@article{Zingman2016Detec-32382,
  year={2016},
  doi={10.1109/TGRS.2016.2545919},
  title={Detection of Fragmented Rectangular Enclosures in Very-High-Resolution Remote Sensing Images},
  number={8},
  volume={54},
  issn={0196-2892},
  journal={IEEE Transactions on Geoscience and Remote Sensing},
  pages={4580--4593},
  author={Zingman, Igor and Saupe, Dietmar and Penatti, Otavio A. B. and Lambers, Karsten}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/32382">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-08-02T08:26:28Z</dc:date>
    <dc:creator>Saupe, Dietmar</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Penatti, Otavio A. B.</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/32382"/>
    <dc:contributor>Saupe, Dietmar</dc:contributor>
    <dc:creator>Penatti, Otavio A. B.</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2016</dcterms:issued>
    <dcterms:abstract xml:lang="eng">We develop an approach for the detection of ruins of livestock enclosures (LEs) in alpine areas captured by high-resolution remotely sensed images. These structures are usually of approximately rectangular shape and appear in images as faint fragmented contours in complex background. We address this problem by introducing a rectangularity feature that quantifies the degree of alignment of an optimal subset of extracted linear segments with a contour of rectangular shape. The rectangularity feature has high values not only for perfectly regular enclosures but also for ruined ones with distorted angles, fragmented walls, or even a completely missing wall. Furthermore, it has a zero value for spurious structures with less than three sides of a perceivable rectangle. We show how the detection performance can be improved by learning a linear combination of the rectangularity and size features from just a few available representative examples and a large number of negatives. Our approach allowed detection of enclosures in the Silvretta Alps that were previously unknown. A comparative performance analysis is provided. Among other features, our comparison includes the state-of-the-art features that were generated by pretrained deep convolutional neural networks (CNNs). The deep CNN features, although learned from a very different type of images, provided the basic ability to capture the visual concept of the LEs. However, our handcrafted rectangularity-size features showed considerably higher performance.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Zingman, Igor</dc:contributor>
    <dc:creator>Zingman, Igor</dc:creator>
    <dc:language>eng</dc:language>
    <dc:contributor>Lambers, Karsten</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-08-02T08:26:28Z</dcterms:available>
    <dc:creator>Lambers, Karsten</dc:creator>
    <dcterms:title>Detection of Fragmented Rectangular Enclosures in Very-High-Resolution Remote Sensing Images</dcterms:title>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen

Versionsgeschichte

Gerade angezeigt 1 - 3 von 3
VersionDatumZusammenfassung
4*
2017-08-02 08:24:22
2016-03-22 15:57:07
After a minor revision the article was accepted to IEEE Transactions on Geoscience and Remote Sensing
2015-12-11 10:41:51
* Ausgewählte Version