Detection of Fragmented Rectangular Enclosures in Very-High-Resolution Remote Sensing Images

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2016
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Zusammenfassung

We develop an approach for the detection of ruins of livestock enclosures (LEs) in alpine areas captured by high-resolution remotely sensed images. These structures are usually of approximately rectangular shape and appear in images as faint fragmented contours in complex background. We address this problem by introducing a rectangularity feature that quantifies the degree of alignment of an optimal subset of extracted linear segments with a contour of rectangular shape. The rectangularity feature has high values not only for perfectly regular enclosures but also for ruined ones with distorted angles, fragmented walls, or even a completely missing wall. Furthermore, it has a zero value for spurious structures with less than three sides of a perceivable rectangle. We show how the detection performance can be improved by learning a linear combination of the rectangularity and size features from just a few available representative examples and a large number of negatives. Our approach allowed detection of enclosures in the Silvretta Alps that were previously unknown. A comparative performance analysis is provided. Among other features, our comparison includes the state-of-the-art features that were generated by pretrained deep convolutional neural networks (CNNs). The deep CNN features, although learned from a very different type of images, provided the basic ability to capture the visual concept of the LEs. However, our handcrafted rectangularity-size features showed considerably higher performance.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690ZINGMAN, Igor, Dietmar SAUPE, Otavio A. B. PENATTI, Karsten LAMBERS, 2016. Detection of Fragmented Rectangular Enclosures in Very-High-Resolution Remote Sensing Images. In: IEEE Transactions on Geoscience and Remote Sensing. 2016, 54(8), pp. 4580-4593. ISSN 0196-2892. eISSN 1558-0644. Available under: doi: 10.1109/TGRS.2016.2545919
BibTex
@article{Zingman2016Detec-32382,
  year={2016},
  doi={10.1109/TGRS.2016.2545919},
  title={Detection of Fragmented Rectangular Enclosures in Very-High-Resolution Remote Sensing Images},
  number={8},
  volume={54},
  issn={0196-2892},
  journal={IEEE Transactions on Geoscience and Remote Sensing},
  pages={4580--4593},
  author={Zingman, Igor and Saupe, Dietmar and Penatti, Otavio A. B. and Lambers, Karsten}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/32382">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-08-02T08:26:28Z</dc:date>
    <dc:creator>Saupe, Dietmar</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Penatti, Otavio A. B.</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/32382"/>
    <dc:contributor>Saupe, Dietmar</dc:contributor>
    <dc:creator>Penatti, Otavio A. B.</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2016</dcterms:issued>
    <dcterms:abstract xml:lang="eng">We develop an approach for the detection of ruins of livestock enclosures (LEs) in alpine areas captured by high-resolution remotely sensed images. These structures are usually of approximately rectangular shape and appear in images as faint fragmented contours in complex background. We address this problem by introducing a rectangularity feature that quantifies the degree of alignment of an optimal subset of extracted linear segments with a contour of rectangular shape. The rectangularity feature has high values not only for perfectly regular enclosures but also for ruined ones with distorted angles, fragmented walls, or even a completely missing wall. Furthermore, it has a zero value for spurious structures with less than three sides of a perceivable rectangle. We show how the detection performance can be improved by learning a linear combination of the rectangularity and size features from just a few available representative examples and a large number of negatives. Our approach allowed detection of enclosures in the Silvretta Alps that were previously unknown. A comparative performance analysis is provided. Among other features, our comparison includes the state-of-the-art features that were generated by pretrained deep convolutional neural networks (CNNs). The deep CNN features, although learned from a very different type of images, provided the basic ability to capture the visual concept of the LEs. However, our handcrafted rectangularity-size features showed considerably higher performance.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Zingman, Igor</dc:contributor>
    <dc:creator>Zingman, Igor</dc:creator>
    <dc:language>eng</dc:language>
    <dc:contributor>Lambers, Karsten</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-08-02T08:26:28Z</dcterms:available>
    <dc:creator>Lambers, Karsten</dc:creator>
    <dcterms:title>Detection of Fragmented Rectangular Enclosures in Very-High-Resolution Remote Sensing Images</dcterms:title>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen

Versionsgeschichte

Gerade angezeigt 1 - 3 von 3
VersionDatumZusammenfassung
4*
2017-08-02 08:24:22
2016-03-22 15:57:07
After a minor revision the article was accepted to IEEE Transactions on Geoscience and Remote Sensing
2015-12-11 10:41:51
* Ausgewählte Version