Publikation:

Analytic continuations of log-exp-analytic germs

Lade...
Vorschaubild

Dateien

Kaiser_2-15q9c6q8vthbb5.pdf
Kaiser_2-15q9c6q8vthbb5.pdfGröße: 403.3 KBDownloads: 312

Datum

2019

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Transactions of the American Mathematical Society (TRAN). 2019, 371(7), pp. 5203-5246. ISSN 0002-9947. eISSN 1088-6850. Available under: doi: 10.1090/tran/7748

Zusammenfassung

We describe maximal, in a sense made precise, L-analytic continuations of germs at +∞ of unary functions definable in the o-minimal structure Ran,exp on the Riemann surface L of the logarithm. As one application, we give an upper bound on the logarithmic-exponential complexity of the compositional inverse of an infinitely increasing such germ, in terms of its own logarithmic-exponential complexity and its level. As a second application, we strengthen Wilkie’s theorem on definable complex analytic continuations of germs belonging to the residue field Rpoly of the valuation ring of all polynomially bounded definable germs.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KAISER, Tobias, Patrick SPEISSEGGER, 2019. Analytic continuations of log-exp-analytic germs. In: Transactions of the American Mathematical Society (TRAN). 2019, 371(7), pp. 5203-5246. ISSN 0002-9947. eISSN 1088-6850. Available under: doi: 10.1090/tran/7748
BibTex
@article{Kaiser2019Analy-40967.2,
  year={2019},
  doi={10.1090/tran/7748},
  title={Analytic continuations of log-exp-analytic germs},
  number={7},
  volume={371},
  issn={0002-9947},
  journal={Transactions of the American Mathematical Society (TRAN)},
  pages={5203--5246},
  author={Kaiser, Tobias and Speissegger, Patrick}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40967.2">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dcterms:title>Analytic continuations of log-exp-analytic germs</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dc:creator>Kaiser, Tobias</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/40967.2/1/Kaiser_2-15q9c6q8vthbb5.pdf"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/40967.2/1/Kaiser_2-15q9c6q8vthbb5.pdf"/>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40967.2"/>
    <dcterms:abstract xml:lang="eng">We describe maximal, in a sense made precise, L-analytic continuations of germs at +∞ of unary functions definable in the o-minimal structure R&lt;sub&gt;an,exp&lt;/sub&gt; on the Riemann surface L of the logarithm. As one application, we give an upper bound on the logarithmic-exponential complexity of the compositional inverse of an infinitely increasing such germ, in terms of its own logarithmic-exponential complexity and its level. As a second application, we strengthen Wilkie’s theorem on definable complex analytic continuations of germs belonging to the residue field R&lt;sub&gt;poly&lt;/sub&gt; of the valuation ring of all polynomially bounded definable germs.</dcterms:abstract>
    <dc:contributor>Kaiser, Tobias</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-04-09T12:59:48Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-04-09T12:59:48Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Speissegger, Patrick</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:issued>2019</dcterms:issued>
    <dc:contributor>Speissegger, Patrick</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja
Diese Publikation teilen

Versionsgeschichte

Gerade angezeigt 1 - 2 von 2
VersionDatumZusammenfassung
2*
2019-04-09 12:54:38
2017-12-19 14:42:05
* Ausgewählte Version