Dies ist nicht die neueste Version dieses Items. Die neueste Version finden Sie unter hier.
Portfolio Optimization under Nonlinear Utility
dc.contributor.author | Heyne, Gregor | |
dc.contributor.author | Kupper, Michael | |
dc.contributor.author | Tangpi, Ludovic | |
dc.date.accessioned | 2015-05-06T06:33:07Z | |
dc.date.available | 2015-05-06T06:33:07Z | |
dc.date.issued | 2015 | eng |
dc.description.abstract | This paper studies the utility maximization problem of an agent with non-trivial endowment, and whose preferences are modeled by the maximal subsolution of a BSDE. We prove existence of an optimal trading strategy and relate our existence result to the existence of a maximal subsolution to a controlled decoupled FBSDE. Using BSDE duality, we show that the utility maximization problem can be seen as a robust control problem admitting a saddle point if the generator of the BSDE additionally satisfies a specific growth condition. We show by convex duality that any saddle point of the robust control problem agrees with a primal and a dual optimizer of the utility maximization problem, and can be characterized in terms of a BSDE solution. | eng |
dc.identifier.arxiv | 1504.03931 | |
dc.identifier.uri | http://kops.uni-konstanz.de/handle/123456789/30887 | |
dc.language.iso | eng | eng |
dc.subject.ddc | 510 | eng |
dc.title | Portfolio Optimization under Nonlinear Utility | eng |
dc.type | PREPRINT | eng |
dspace.entity.type | Publication | |
kops.flag.knbibliography | true | |
temp.internal.duplicates | <p>Keine Dubletten gefunden. Letzte Überprüfung: 05.05.2015 16:45:28</p> | deu |
temp.submission.doi | ||
temp.submission.source |