Portfolio Optimization under Nonlinear Utility

dc.contributor.authorHeyne, Gregor
dc.contributor.authorKupper, Michael
dc.contributor.authorTangpi, Ludovic
dc.date.accessioned2015-05-06T06:33:07Z
dc.date.available2015-05-06T06:33:07Z
dc.date.issued2015eng
dc.description.abstractThis paper studies the utility maximization problem of an agent with non-trivial endowment, and whose preferences are modeled by the maximal subsolution of a BSDE. We prove existence of an optimal trading strategy and relate our existence result to the existence of a maximal subsolution to a controlled decoupled FBSDE. Using BSDE duality, we show that the utility maximization problem can be seen as a robust control problem admitting a saddle point if the generator of the BSDE additionally satisfies a specific growth condition. We show by convex duality that any saddle point of the robust control problem agrees with a primal and a dual optimizer of the utility maximization problem, and can be characterized in terms of a BSDE solution.eng
dc.identifier.arxiv1504.03931
dc.identifier.urihttp://kops.uni-konstanz.de/handle/123456789/30887
dc.language.isoengeng
dc.subject.ddc510eng
dc.titlePortfolio Optimization under Nonlinear Utilityeng
dc.typePREPRINTeng
dspace.entity.typePublication
kops.flag.knbibliographytrue
temp.internal.duplicates<p>Keine Dubletten gefunden. Letzte Überprüfung: 05.05.2015 16:45:28</p>deu
temp.submission.doi
temp.submission.source

Dateien

Versionsgeschichte

Gerade angezeigt 1 - 2 von 2
VersionDatumZusammenfassung
2018-02-06 14:51:42
1*
2015-05-06 06:33:07
* Ausgewählte Version