Publikation: Portfolio Optimization under Nonlinear Utility
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
This paper studies the utility maximization problem of an agent with non-trivial endowment, and whose preferences are modeled by the maximal subsolution of a BSDE. We prove existence of an optimal trading strategy and relate our existence result to the existence of a maximal subsolution to a controlled decoupled FBSDE. Using BSDE duality, we show that the utility maximization problem can be seen as a robust control problem admitting a saddle point if the generator of the BSDE additionally satisfies a specific growth condition. We show by convex duality that any saddle point of the robust control problem agrees with a primal and a dual optimizer of the utility maximization problem, and can be characterized in terms of a BSDE solution.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HEYNE, Gregor, Michael KUPPER, Ludovic TANGPI, 2016. Portfolio Optimization under Nonlinear Utility. In: International Journal of Theoretical and Applied Finance. 2016, 19(5), 1650029. ISSN 0219-0249. eISSN 1793-6322. Available under: doi: 10.1142/S0219024916500291BibTex
@article{Heyne2016Portf-30887.2,
year={2016},
doi={10.1142/S0219024916500291},
title={Portfolio Optimization under Nonlinear Utility},
number={5},
volume={19},
issn={0219-0249},
journal={International Journal of Theoretical and Applied Finance},
author={Heyne, Gregor and Kupper, Michael and Tangpi, Ludovic},
note={Article Number: 1650029}
}RDF
<rdf:RDF
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:bibo="http://purl.org/ontology/bibo/"
xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:void="http://rdfs.org/ns/void#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#" >
<rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30887.2">
<dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-06T14:55:08Z</dc:date>
<dc:language>eng</dc:language>
<dcterms:title>Portfolio Optimization under Nonlinear Utility</dcterms:title>
<dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-06T14:55:08Z</dcterms:available>
<dc:contributor>Kupper, Michael</dc:contributor>
<dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
<bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/30887.2"/>
<void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
<dc:creator>Heyne, Gregor</dc:creator>
<dc:contributor>Tangpi, Ludovic</dc:contributor>
<foaf:homepage rdf:resource="http://localhost:8080/"/>
<dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
<dc:contributor>Heyne, Gregor</dc:contributor>
<dcterms:issued>2016</dcterms:issued>
<dc:creator>Kupper, Michael</dc:creator>
<dcterms:abstract xml:lang="eng">This paper studies the utility maximization problem of an agent with non-trivial endowment, and whose preferences are modeled by the maximal subsolution of a BSDE. We prove existence of an optimal trading strategy and relate our existence result to the existence of a maximal subsolution to a controlled decoupled FBSDE. Using BSDE duality, we show that the utility maximization problem can be seen as a robust control problem admitting a saddle point if the generator of the BSDE additionally satisfies a specific growth condition. We show by convex duality that any saddle point of the robust control problem agrees with a primal and a dual optimizer of the utility maximization problem, and can be characterized in terms of a BSDE solution.</dcterms:abstract>
<dc:creator>Tangpi, Ludovic</dc:creator>
</rdf:Description>
</rdf:RDF>