Publikation:

Portfolio Optimization under Nonlinear Utility

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2016

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

International Journal of Theoretical and Applied Finance. 2016, 19(5), 1650029. ISSN 0219-0249. eISSN 1793-6322. Available under: doi: 10.1142/S0219024916500291

Zusammenfassung

This paper studies the utility maximization problem of an agent with non-trivial endowment, and whose preferences are modeled by the maximal subsolution of a BSDE. We prove existence of an optimal trading strategy and relate our existence result to the existence of a maximal subsolution to a controlled decoupled FBSDE. Using BSDE duality, we show that the utility maximization problem can be seen as a robust control problem admitting a saddle point if the generator of the BSDE additionally satisfies a specific growth condition. We show by convex duality that any saddle point of the robust control problem agrees with a primal and a dual optimizer of the utility maximization problem, and can be characterized in terms of a BSDE solution.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Subsolutions of BSDEs; submartingale; convex duality; utility maximization

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HEYNE, Gregor, Michael KUPPER, Ludovic TANGPI, 2016. Portfolio Optimization under Nonlinear Utility. In: International Journal of Theoretical and Applied Finance. 2016, 19(5), 1650029. ISSN 0219-0249. eISSN 1793-6322. Available under: doi: 10.1142/S0219024916500291
BibTex
@article{Heyne2016Portf-30887.2,
  year={2016},
  doi={10.1142/S0219024916500291},
  title={Portfolio Optimization under Nonlinear Utility},
  number={5},
  volume={19},
  issn={0219-0249},
  journal={International Journal of Theoretical and Applied Finance},
  author={Heyne, Gregor and Kupper, Michael and Tangpi, Ludovic},
  note={Article Number: 1650029}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30887.2">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-06T14:55:08Z</dc:date>
    <dc:language>eng</dc:language>
    <dcterms:title>Portfolio Optimization under Nonlinear Utility</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-06T14:55:08Z</dcterms:available>
    <dc:contributor>Kupper, Michael</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/30887.2"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Heyne, Gregor</dc:creator>
    <dc:contributor>Tangpi, Ludovic</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Heyne, Gregor</dc:contributor>
    <dcterms:issued>2016</dcterms:issued>
    <dc:creator>Kupper, Michael</dc:creator>
    <dcterms:abstract xml:lang="eng">This paper studies the utility maximization problem of an agent with non-trivial endowment, and whose preferences are modeled by the maximal subsolution of a BSDE. We prove existence of an optimal trading strategy and relate our existence result to the existence of a maximal subsolution to a controlled decoupled FBSDE. Using BSDE duality, we show that the utility maximization problem can be seen as a robust control problem admitting a saddle point if the generator of the BSDE additionally satisfies a specific growth condition. We show by convex duality that any saddle point of the robust control problem agrees with a primal and a dual optimizer of the utility maximization problem, and can be characterized in terms of a BSDE solution.</dcterms:abstract>
    <dc:creator>Tangpi, Ludovic</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen

Versionsgeschichte

Gerade angezeigt 1 - 2 von 2
VersionDatumZusammenfassung
2*
2018-02-06 14:51:42
2015-05-06 06:33:07
* Ausgewählte Version