Publikation: Portfolio Optimization under Nonlinear Utility
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
This paper studies the utility maximization problem of an agent with non-trivial endowment, and whose preferences are modeled by the maximal subsolution of a BSDE. We prove existence of an optimal trading strategy and relate our existence result to the existence of a maximal subsolution to a controlled decoupled FBSDE. Using BSDE duality, we show that the utility maximization problem can be seen as a robust control problem admitting a saddle point if the generator of the BSDE additionally satisfies a specific growth condition. We show by convex duality that any saddle point of the robust control problem agrees with a primal and a dual optimizer of the utility maximization problem, and can be characterized in terms of a BSDE solution.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HEYNE, Gregor, Michael KUPPER, Ludovic TANGPI, 2016. Portfolio Optimization under Nonlinear Utility. In: International Journal of Theoretical and Applied Finance. 2016, 19(5), 1650029. ISSN 0219-0249. eISSN 1793-6322. Available under: doi: 10.1142/S0219024916500291BibTex
@article{Heyne2016Portf-30887.2, year={2016}, doi={10.1142/S0219024916500291}, title={Portfolio Optimization under Nonlinear Utility}, number={5}, volume={19}, issn={0219-0249}, journal={International Journal of Theoretical and Applied Finance}, author={Heyne, Gregor and Kupper, Michael and Tangpi, Ludovic}, note={Article Number: 1650029} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30887.2"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-06T14:55:08Z</dc:date> <dc:language>eng</dc:language> <dcterms:title>Portfolio Optimization under Nonlinear Utility</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-06T14:55:08Z</dcterms:available> <dc:contributor>Kupper, Michael</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/30887.2"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Heyne, Gregor</dc:creator> <dc:contributor>Tangpi, Ludovic</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Heyne, Gregor</dc:contributor> <dcterms:issued>2016</dcterms:issued> <dc:creator>Kupper, Michael</dc:creator> <dcterms:abstract xml:lang="eng">This paper studies the utility maximization problem of an agent with non-trivial endowment, and whose preferences are modeled by the maximal subsolution of a BSDE. We prove existence of an optimal trading strategy and relate our existence result to the existence of a maximal subsolution to a controlled decoupled FBSDE. Using BSDE duality, we show that the utility maximization problem can be seen as a robust control problem admitting a saddle point if the generator of the BSDE additionally satisfies a specific growth condition. We show by convex duality that any saddle point of the robust control problem agrees with a primal and a dual optimizer of the utility maximization problem, and can be characterized in terms of a BSDE solution.</dcterms:abstract> <dc:creator>Tangpi, Ludovic</dc:creator> </rdf:Description> </rdf:RDF>