Testing out-of-sample portfolio performance
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
This paper studies the quality of portfolio performance tests based on out-of-sample returns. By disentangling the components of the out-of-sample performance, we show that the observed differences are driven largely by the differences in estimation risk. Our Monte Carlo study reveals that the puzzling empirical findings of inferior performances of theoretically superior strategies result mainly from the low power of these tests. Thus, our results provide an explanation as to why the null hypothesis of equal performance of the simple equally-weighted portfolio compared to many theoretically-superior alternative strategies cannot be rejected in many out-of-sample horse races. Our findings turn out to be robust with respect to different designs and the implementation strategies of the tests.
For the applied researcher, we provide some guidance as to how to cope with the problem of low power. In particular, we make use of a novel pretest-based portfolio strategy to show how the information regarding performance tests can be used optimally.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KAZAK, Ekaterina, Winfried POHLMEIER, 2019. Testing out-of-sample portfolio performance. In: International Journal of Forecasting. 2019, 35(2), pp. 540-554. ISSN 0169-2070. eISSN 1872-8200. Available under: doi: 10.1016/j.ijforecast.2018.09.010BibTex
@article{Kazak2019Testi-43886.2, year={2019}, doi={10.1016/j.ijforecast.2018.09.010}, title={Testing out-of-sample portfolio performance}, number={2}, volume={35}, issn={0169-2070}, journal={International Journal of Forecasting}, pages={540--554}, author={Kazak, Ekaterina and Pohlmeier, Winfried} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43886.2"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <dc:language>eng</dc:language> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43886.2"/> <dc:contributor>Kazak, Ekaterina</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-06-19T08:44:11Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">This paper studies the quality of portfolio performance tests based on out-of-sample returns. By disentangling the components of the out-of-sample performance, we show that the observed differences are driven largely by the differences in estimation risk. Our Monte Carlo study reveals that the puzzling empirical findings of inferior performances of theoretically superior strategies result mainly from the low power of these tests. Thus, our results provide an explanation as to why the null hypothesis of equal performance of the simple equally-weighted portfolio compared to many theoretically-superior alternative strategies cannot be rejected in many out-of-sample horse races. Our findings turn out to be robust with respect to different designs and the implementation strategies of the tests.<br /><br />For the applied researcher, we provide some guidance as to how to cope with the problem of low power. In particular, we make use of a novel pretest-based portfolio strategy to show how the information regarding performance tests can be used optimally.</dcterms:abstract> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-06-19T08:44:11Z</dc:date> <dc:contributor>Pohlmeier, Winfried</dc:contributor> <dc:creator>Kazak, Ekaterina</dc:creator> <dcterms:title>Testing out-of-sample portfolio performance</dcterms:title> <dc:rights>terms-of-use</dc:rights> <dc:creator>Pohlmeier, Winfried</dc:creator> <dcterms:issued>2019</dcterms:issued> </rdf:Description> </rdf:RDF>