On the Exactness of Lasserre Relaxations for Compact Convex Basic Closed Semialgebraic Sets
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Consider a finite system of nonstrict real polynomial inequalities and suppose its solution set $S\subseteq\mathbb R^n$ is convex, has nonempty interior, and is compact. Suppose that the system satisfies the Archimedean condition, which is slightly stronger than the compactness of $S$. Suppose that each defining polynomial satisfies a second order strict quasiconcavity condition where it vanishes on $S$ (which is very natural because of the convexity of $S$) or its Hessian has a certain matrix sums of squares certificate for negative-semidefiniteness on $S$ (fulfilled trivially by linear polynomials). Then we show that the system possesses an exact Lasserre relaxation. In their seminal work of 2009, Helton and Nie showed under the same conditions that $S$ is the projection of a spectrahedron, i.e., it has a semidefinite representation. The semidefinite representation used by Helton and Nie arises from glueing together Lasserre relaxations of many small pieces obtained in a nonconstructive way. By refining and varying their approach, we show that we can simply take a Lasserre relaxation of the original system itself. Such a result was provided by Helton and Nie with much more machinery only under very technical conditions and after changing the description of $S$.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KRIEL, Tom-Lukas, Markus SCHWEIGHOFER, 2018. On the Exactness of Lasserre Relaxations for Compact Convex Basic Closed Semialgebraic Sets. In: SIAM Journal on Optimization. 2018, 28(2), pp. 1796-1816. ISSN 1052-6234. eISSN 1095-7189. Available under: doi: 10.1137/17M1128290BibTex
@article{Kriel2018Exact-38753.2, year={2018}, doi={10.1137/17M1128290}, title={On the Exactness of Lasserre Relaxations for Compact Convex Basic Closed Semialgebraic Sets}, number={2}, volume={28}, issn={1052-6234}, journal={SIAM Journal on Optimization}, pages={1796--1816}, author={Kriel, Tom-Lukas and Schweighofer, Markus} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/38753.2"> <dcterms:abstract xml:lang="eng">Consider a finite system of nonstrict real polynomial inequalities and suppose its solution set $S\subseteq\mathbb R^n$ is convex, has nonempty interior, and is compact. Suppose that the system satisfies the Archimedean condition, which is slightly stronger than the compactness of $S$. Suppose that each defining polynomial satisfies a second order strict quasiconcavity condition where it vanishes on $S$ (which is very natural because of the convexity of $S$) or its Hessian has a certain matrix sums of squares certificate for negative-semidefiniteness on $S$ (fulfilled trivially by linear polynomials). Then we show that the system possesses an exact Lasserre relaxation. In their seminal work of 2009, Helton and Nie showed under the same conditions that $S$ is the projection of a spectrahedron, i.e., it has a semidefinite representation. The semidefinite representation used by Helton and Nie arises from glueing together Lasserre relaxations of many small pieces obtained in a nonconstructive way. By refining and varying their approach, we show that we can simply take a Lasserre relaxation of the original system itself. Such a result was provided by Helton and Nie with much more machinery only under very technical conditions and after changing the description of $S$.</dcterms:abstract> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-07-18T07:17:29Z</dc:date> <dc:creator>Kriel, Tom-Lukas</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Schweighofer, Markus</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-07-18T07:17:29Z</dcterms:available> <dc:contributor>Kriel, Tom-Lukas</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2018</dcterms:issued> <dcterms:title>On the Exactness of Lasserre Relaxations for Compact Convex Basic Closed Semialgebraic Sets</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/38753.2"/> <dc:contributor>Schweighofer, Markus</dc:contributor> <dc:rights>terms-of-use</dc:rights> </rdf:Description> </rdf:RDF>