KOPS - The Institutional Repository of the University of Konstanz

Explainable AI for Time Series Classification : A Review, Taxonomy and Research Directions

Explainable AI for Time Series Classification : A Review, Taxonomy and Research Directions

Cite This

Files in this item

Checksum: MD5:8d6794bfa21d6821b457ddc17d155ce2

THEISSLER, Andreas, Francesco SPINNATO, Udo SCHLEGEL, Riccardo GUIDOTTI, 2022. Explainable AI for Time Series Classification : A Review, Taxonomy and Research Directions. In: IEEE Access. IEEE. 10, pp. 100700-100724. eISSN 2169-3536. Available under: doi: 10.1109/ACCESS.2022.3207765

@article{Theissler2022Expla-59034, title={Explainable AI for Time Series Classification : A Review, Taxonomy and Research Directions}, year={2022}, doi={10.1109/ACCESS.2022.3207765}, volume={10}, journal={IEEE Access}, pages={100700--100724}, author={Theissler, Andreas and Spinnato, Francesco and Schlegel, Udo and Guidotti, Riccardo} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/59034"> <dc:creator>Schlegel, Udo</dc:creator> <dc:creator>Spinnato, Francesco</dc:creator> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-11-04T12:06:10Z</dc:date> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/legalcode/"/> <dc:creator>Guidotti, Riccardo</dc:creator> <dc:contributor>Spinnato, Francesco</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-11-04T12:06:10Z</dcterms:available> <dc:contributor>Theissler, Andreas</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59034"/> <dc:contributor>Schlegel, Udo</dc:contributor> <dcterms:title>Explainable AI for Time Series Classification : A Review, Taxonomy and Research Directions</dcterms:title> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59034/1/Theissler_2-tmylb2s4jlxo4.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:abstract xml:lang="eng">Time series data is increasingly used in a wide range of fields, and it is often relied on in crucial applications and high-stakes decision-making. For instance, sensors generate time series data to recognize different types of anomalies through automatic decision-making systems. Typically, these systems are realized with machine learning models that achieve top-tier performance on time series classification tasks. Unfortunately, the logic behind their prediction is opaque and hard to understand from a human standpoint. Recently, we observed a consistent increase in the development of explanation methods for time series classification justifying the need to structure and review the field. In this work, we (a) present the first extensive literature review on Explainable AI (XAI) for time series classification, (b) categorize the research field through a taxonomy subdividing the methods into time points-based, subsequences-based and instance-based, and (c) identify open research directions regarding the type of explanations and the evaluation of explanations and interpretability.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:contributor>Guidotti, Riccardo</dc:contributor> <dc:creator>Theissler, Andreas</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dcterms:issued>2022</dcterms:issued> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59034/1/Theissler_2-tmylb2s4jlxo4.pdf"/> </rdf:Description> </rdf:RDF>

Downloads since Nov 4, 2022 (Information about access statistics)

Theissler_2-tmylb2s4jlxo4.pdf 37

This item appears in the following Collection(s)

terms-of-use Except where otherwise noted, this item's license is described as terms-of-use

Search KOPS


Browse

My Account