KOPS - The Institutional Repository of the University of Konstanz

A Comprehensive Workflow for Effective Imitation and Reinforcement Learning with Visual Analytics

A Comprehensive Workflow for Effective Imitation and Reinforcement Learning with Visual Analytics

Cite This

Files in this item

Checksum: MD5:8ea96abb9aa07d6eccd67a8937bff901

METZ, Yannick, Udo SCHLEGEL, Daniel SEEBACHER, Mennatallah EL-ASSADY, Daniel A. KEIM, 2022. A Comprehensive Workflow for Effective Imitation and Reinforcement Learning with Visual Analytics. 13th International EuroVis Workshop on Visual Analytics (EuroVA 2022). Rome, Italy, Jun 13, 2022. In: BERNARD, Jürgen, ed., Marco ANGELINI, ed.. EuroVis Workshop on Visual Analytics (EuroVA 2022). Goslar:The Eurographics Association, pp. 19-23. ISBN 978-3-03868-183-0. Available under: doi: 10.2312/eurova.20221074

@inproceedings{Metz2022Compr-57922, title={A Comprehensive Workflow for Effective Imitation and Reinforcement Learning with Visual Analytics}, year={2022}, doi={10.2312/eurova.20221074}, isbn={978-3-03868-183-0}, address={Goslar}, publisher={The Eurographics Association}, booktitle={EuroVis Workshop on Visual Analytics (EuroVA 2022)}, pages={19--23}, editor={Bernard, Jürgen and Angelini, Marco}, author={Metz, Yannick and Schlegel, Udo and Seebacher, Daniel and El-Assady, Mennatallah and Keim, Daniel A.} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/57922"> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57922/1/Metz_2-4e7iwot98daw9.pdf"/> <dc:contributor>Metz, Yannick</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>El-Assady, Mennatallah</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:contributor>El-Assady, Mennatallah</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57922/1/Metz_2-4e7iwot98daw9.pdf"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57922"/> <dc:creator>Schlegel, Udo</dc:creator> <dc:contributor>Seebacher, Daniel</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-07-04T11:34:54Z</dcterms:available> <dcterms:issued>2022</dcterms:issued> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:creator>Seebacher, Daniel</dc:creator> <dcterms:abstract xml:lang="eng">Multiple challenges hinder the application of reinforcement learning algorithms in experimental and real-world use cases even with recent successes in such areas. Such challenges occur at different stages of the development and deployment of such models. While reinforcement learning workflows share similarities with machine learning approaches, we argue that distinct challenges can be tackled and overcome using visual analytic concepts. Thus, we propose a comprehensive workflow for reinforcement learning and present an implementation of our workflow incorporating visual analytic concepts integrating tailored views and visualizations for different stages and tasks of the workflow.</dcterms:abstract> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-07-04T11:34:54Z</dc:date> <dc:creator>Metz, Yannick</dc:creator> <dcterms:title>A Comprehensive Workflow for Effective Imitation and Reinforcement Learning with Visual Analytics</dcterms:title> <dc:contributor>Schlegel, Udo</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>

Downloads since Jul 4, 2022 (Information about access statistics)

Metz_2-4e7iwot98daw9.pdf 94

This item appears in the following Collection(s)

Search KOPS


Browse

My Account