A Comprehensive Workflow for Effective Imitation and Reinforcement Learning with Visual Analytics

Thumbnail Image
Date
2022
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Contribution to a conference collection
Publication status
Published
Published in
EuroVis Workshop on Visual Analytics (EuroVA 2022) / Bernard, Jürgen; Angelini, Marco (ed.). - Goslar : The Eurographics Association, 2022. - pp. 19-23. - ISBN 978-3-03868-183-0
Abstract
Multiple challenges hinder the application of reinforcement learning algorithms in experimental and real-world use cases even with recent successes in such areas. Such challenges occur at different stages of the development and deployment of such models. While reinforcement learning workflows share similarities with machine learning approaches, we argue that distinct challenges can be tackled and overcome using visual analytic concepts. Thus, we propose a comprehensive workflow for reinforcement learning and present an implementation of our workflow incorporating visual analytic concepts integrating tailored views and visualizations for different stages and tasks of the workflow.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Conference
13th International EuroVis Workshop on Visual Analytics (EuroVA 2022), Jun 13, 2022, Rome, Italy
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690METZ, Yannick, Udo SCHLEGEL, Daniel SEEBACHER, Mennatallah EL-ASSADY, Daniel A. KEIM, 2022. A Comprehensive Workflow for Effective Imitation and Reinforcement Learning with Visual Analytics. 13th International EuroVis Workshop on Visual Analytics (EuroVA 2022). Rome, Italy, Jun 13, 2022. In: BERNARD, Jürgen, ed., Marco ANGELINI, ed.. EuroVis Workshop on Visual Analytics (EuroVA 2022). Goslar:The Eurographics Association, pp. 19-23. ISBN 978-3-03868-183-0. Available under: doi: 10.2312/eurova.20221074
BibTex
@inproceedings{Metz2022Compr-57922,
  year={2022},
  doi={10.2312/eurova.20221074},
  title={A Comprehensive Workflow for Effective Imitation and Reinforcement Learning with Visual Analytics},
  isbn={978-3-03868-183-0},
  publisher={The Eurographics Association},
  address={Goslar},
  booktitle={EuroVis Workshop on Visual Analytics (EuroVA 2022)},
  pages={19--23},
  editor={Bernard, Jürgen and Angelini, Marco},
  author={Metz, Yannick and Schlegel, Udo and Seebacher, Daniel and El-Assady, Mennatallah and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57922">
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Seebacher, Daniel</dc:contributor>
    <dcterms:issued>2022</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Metz, Yannick</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57922/1/Metz_2-4e7iwot98daw9.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57922/1/Metz_2-4e7iwot98daw9.pdf"/>
    <dc:creator>Seebacher, Daniel</dc:creator>
    <dc:creator>Schlegel, Udo</dc:creator>
    <dc:creator>El-Assady, Mennatallah</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-07-04T11:34:54Z</dcterms:available>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Schlegel, Udo</dc:contributor>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>El-Assady, Mennatallah</dc:contributor>
    <dc:creator>Metz, Yannick</dc:creator>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:title>A Comprehensive Workflow for Effective Imitation and Reinforcement Learning with Visual Analytics</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-07-04T11:34:54Z</dc:date>
    <dcterms:abstract xml:lang="eng">Multiple challenges hinder the application of reinforcement learning algorithms in experimental and real-world use cases even with recent successes in such areas. Such challenges occur at different stages of the development and deployment of such models. While reinforcement learning workflows share similarities with machine learning approaches, we argue that distinct challenges can be tackled and overcome using visual analytic concepts. Thus, we propose a comprehensive workflow for reinforcement learning and present an implementation of our workflow incorporating visual analytic concepts integrating tailored views and visualizations for different stages and tasks of the workflow.</dcterms:abstract>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57922"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed