Duality theory for robust utility maximisation

No Thumbnail Available
Files
There are no files associated with this item.
Date
2021
Authors
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
oops
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published
Published in
Finance and Stochastics ; 25 (2021), 3. - pp. 469-503. - Springer. - ISSN 0949-2984. - eISSN 1432-1122
Abstract
In this paper, we present a duality theory for the robust utility maximisation problem in continuous time for utility functions defined on the positive real line. Our results are inspired by – and can be seen as the robust analogues of – the seminal work of Kramkov and Schachermayer (Ann. Appl. Probab. 9:904–950, 1999). Namely, we show that if the set of attainable trading outcomes and the set of pricing measures satisfy a bipolar relation, then the utility maximisation problem is in duality with a conjugate problem. We further discuss the existence of optimal trading strategies. In particular, our general results include the case of logarithmic and power utility, and they apply to drift and volatility uncertainty.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690BARTL, Daniel, Michael KUPPER, Ariel NEUFELD, 2021. Duality theory for robust utility maximisation. In: Finance and Stochastics. Springer. 25(3), pp. 469-503. ISSN 0949-2984. eISSN 1432-1122. Available under: doi: 10.1007/s00780-021-00455-6
BibTex
@article{Bartl2021Duali-54230,
  year={2021},
  doi={10.1007/s00780-021-00455-6},
  title={Duality theory for robust utility maximisation},
  number={3},
  volume={25},
  issn={0949-2984},
  journal={Finance and Stochastics},
  pages={469--503},
  author={Bartl, Daniel and Kupper, Michael and Neufeld, Ariel}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54230">
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Neufeld, Ariel</dc:creator>
    <dc:contributor>Bartl, Daniel</dc:contributor>
    <dc:creator>Bartl, Daniel</dc:creator>
    <dc:contributor>Kupper, Michael</dc:contributor>
    <dcterms:issued>2021</dcterms:issued>
    <dcterms:title>Duality theory for robust utility maximisation</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-07-07T09:46:43Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">In this paper, we present a duality theory for the robust utility maximisation problem in continuous time for utility functions defined on the positive real line. Our results are inspired by – and can be seen as the robust analogues of – the seminal work of Kramkov and Schachermayer (Ann. Appl. Probab. 9:904–950, 1999). Namely, we show that if the set of attainable trading outcomes and the set of pricing measures satisfy a bipolar relation, then the utility maximisation problem is in duality with a conjugate problem. We further discuss the existence of optimal trading strategies. In particular, our general results include the case of logarithmic and power utility, and they apply to drift and volatility uncertainty.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-07-07T09:46:43Z</dc:date>
    <dc:creator>Kupper, Michael</dc:creator>
    <dc:contributor>Neufeld, Ariel</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54230"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Yes