KOPS - The Institutional Repository of the University of Konstanz

MultiSegVA : Using Visual Analytics to Segment Biologging Time Series on Multiple Scales

MultiSegVA : Using Visual Analytics to Segment Biologging Time Series on Multiple Scales

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

MESCHENMOSER, Philipp, Juri BUCHMÜLLER, Daniel SEEBACHER, Martin WIKELSKI, Daniel A. KEIM, 2021. MultiSegVA : Using Visual Analytics to Segment Biologging Time Series on Multiple Scales. In: IEEE Transactions on Visualization and Computer Graphics. IEEE. 27(2), pp. 1623-1633. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2020.3030386

@article{Meschenmoser2021-02Multi-53434, title={MultiSegVA : Using Visual Analytics to Segment Biologging Time Series on Multiple Scales}, year={2021}, doi={10.1109/TVCG.2020.3030386}, number={2}, volume={27}, issn={1077-2626}, journal={IEEE Transactions on Visualization and Computer Graphics}, pages={1623--1633}, author={Meschenmoser, Philipp and Buchmüller, Juri and Seebacher, Daniel and Wikelski, Martin and Keim, Daniel A.} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/53434"> <dc:creator>Meschenmoser, Philipp</dc:creator> <dc:creator>Seebacher, Daniel</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53434"/> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/28"/> <dcterms:issued>2021-02</dcterms:issued> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:contributor>Wikelski, Martin</dc:contributor> <dc:contributor>Meschenmoser, Philipp</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/28"/> <dc:creator>Buchmüller, Juri</dc:creator> <dc:contributor>Buchmüller, Juri</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-22T08:10:36Z</dcterms:available> <dc:creator>Wikelski, Martin</dc:creator> <dcterms:abstract xml:lang="eng">Segmenting biologging time series of animals on multiple temporal scales is an essential step that requires complex techniques with careful parameterization and possibly cross-domain expertise. Yet, there is a lack of visual-interactive tools that strongly support such multi-scale segmentation. To close this gap, we present our MultiSegVA platform for interactively defining segmentation techniques and parameters on multiple temporal scales. MultiSegVA primarily contributes tailored, visual-interactive means and visual analytics paradigms for segmenting unlabeled time series on multiple scales. Further, to flexibly compose the multi-scale segmentation, the platform contributes a new visual query language that links a variety of segmentation techniques. To illustrate our approach, we present a domain-oriented set of segmentation techniques derived in collaboration with movement ecologists. We demonstrate the applicability and usefulness of MultiSegVA in two real-world use cases from movement ecology, related to behavior analysis after environment-aware segmentation, and after progressive clustering. Expert feedback from movement ecologists shows the effectiveness of tailored visual-interactive means and visual analytics paradigms at segmenting multi-scale data, enabling them to perform semantically meaningful analyses. A third use case demonstrates that MultiSegVA is generalizable to other domains.</dcterms:abstract> <dcterms:title>MultiSegVA : Using Visual Analytics to Segment Biologging Time Series on Multiple Scales</dcterms:title> <dc:contributor>Seebacher, Daniel</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-22T08:10:36Z</dc:date> <dc:creator>Keim, Daniel A.</dc:creator> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account