A Comprehensive Workflow for Effective Imitation and Reinforcement Learning with Visual Analytics
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Multiple challenges hinder the application of reinforcement learning algorithms in experimental and real-world use cases even with recent successes in such areas. Such challenges occur at different stages of the development and deployment of such models. While reinforcement learning workflows share similarities with machine learning approaches, we argue that distinct challenges can be tackled and overcome using visual analytic concepts. Thus, we propose a comprehensive workflow for reinforcement learning and present an implementation of our workflow incorporating visual analytic concepts integrating tailored views and visualizations for different stages and tasks of the workflow.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
METZ, Yannick, Udo SCHLEGEL, Daniel SEEBACHER, Mennatallah EL-ASSADY, Daniel A. KEIM, 2022. A Comprehensive Workflow for Effective Imitation and Reinforcement Learning with Visual Analytics. 13th International EuroVis Workshop on Visual Analytics (EuroVA 2022). Rome, Italy, 13. Juni 2022. In: BERNARD, Jürgen, ed., Marco ANGELINI, ed.. EuroVis Workshop on Visual Analytics (EuroVA 2022). Goslar: The Eurographics Association, 2022, pp. 19-23. ISBN 978-3-03868-183-0. Available under: doi: 10.2312/eurova.20221074BibTex
@inproceedings{Metz2022Compr-57922, year={2022}, doi={10.2312/eurova.20221074}, title={A Comprehensive Workflow for Effective Imitation and Reinforcement Learning with Visual Analytics}, isbn={978-3-03868-183-0}, publisher={The Eurographics Association}, address={Goslar}, booktitle={EuroVis Workshop on Visual Analytics (EuroVA 2022)}, pages={19--23}, editor={Bernard, Jürgen and Angelini, Marco}, author={Metz, Yannick and Schlegel, Udo and Seebacher, Daniel and El-Assady, Mennatallah and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57922"> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Seebacher, Daniel</dc:contributor> <dcterms:issued>2022</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Metz, Yannick</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57922/1/Metz_2-4e7iwot98daw9.pdf"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57922/1/Metz_2-4e7iwot98daw9.pdf"/> <dc:creator>Seebacher, Daniel</dc:creator> <dc:creator>Schlegel, Udo</dc:creator> <dc:creator>El-Assady, Mennatallah</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-07-04T11:34:54Z</dcterms:available> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Schlegel, Udo</dc:contributor> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>El-Assady, Mennatallah</dc:contributor> <dc:creator>Metz, Yannick</dc:creator> <dc:creator>Keim, Daniel A.</dc:creator> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:title>A Comprehensive Workflow for Effective Imitation and Reinforcement Learning with Visual Analytics</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-07-04T11:34:54Z</dc:date> <dcterms:abstract xml:lang="eng">Multiple challenges hinder the application of reinforcement learning algorithms in experimental and real-world use cases even with recent successes in such areas. Such challenges occur at different stages of the development and deployment of such models. While reinforcement learning workflows share similarities with machine learning approaches, we argue that distinct challenges can be tackled and overcome using visual analytic concepts. Thus, we propose a comprehensive workflow for reinforcement learning and present an implementation of our workflow incorporating visual analytic concepts integrating tailored views and visualizations for different stages and tasks of the workflow.</dcterms:abstract> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57922"/> </rdf:Description> </rdf:RDF>