Publikation:

A Comprehensive Workflow for Effective Imitation and Reinforcement Learning with Visual Analytics

Lade...
Vorschaubild

Dateien

Metz_2-4e7iwot98daw9.pdf
Metz_2-4e7iwot98daw9.pdfGröße: 1.4 MBDownloads: 234

Datum

2022

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

BERNARD, Jürgen, ed., Marco ANGELINI, ed.. EuroVis Workshop on Visual Analytics (EuroVA 2022). Goslar: The Eurographics Association, 2022, pp. 19-23. ISBN 978-3-03868-183-0. Available under: doi: 10.2312/eurova.20221074

Zusammenfassung

Multiple challenges hinder the application of reinforcement learning algorithms in experimental and real-world use cases even with recent successes in such areas. Such challenges occur at different stages of the development and deployment of such models. While reinforcement learning workflows share similarities with machine learning approaches, we argue that distinct challenges can be tackled and overcome using visual analytic concepts. Thus, we propose a comprehensive workflow for reinforcement learning and present an implementation of our workflow incorporating visual analytic concepts integrating tailored views and visualizations for different stages and tasks of the workflow.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

13th International EuroVis Workshop on Visual Analytics (EuroVA 2022), 13. Juni 2022, Rome, Italy
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690METZ, Yannick, Udo SCHLEGEL, Daniel SEEBACHER, Mennatallah EL-ASSADY, Daniel A. KEIM, 2022. A Comprehensive Workflow for Effective Imitation and Reinforcement Learning with Visual Analytics. 13th International EuroVis Workshop on Visual Analytics (EuroVA 2022). Rome, Italy, 13. Juni 2022. In: BERNARD, Jürgen, ed., Marco ANGELINI, ed.. EuroVis Workshop on Visual Analytics (EuroVA 2022). Goslar: The Eurographics Association, 2022, pp. 19-23. ISBN 978-3-03868-183-0. Available under: doi: 10.2312/eurova.20221074
BibTex
@inproceedings{Metz2022Compr-57922,
  year={2022},
  doi={10.2312/eurova.20221074},
  title={A Comprehensive Workflow for Effective Imitation and Reinforcement Learning with Visual Analytics},
  isbn={978-3-03868-183-0},
  publisher={The Eurographics Association},
  address={Goslar},
  booktitle={EuroVis Workshop on Visual Analytics (EuroVA 2022)},
  pages={19--23},
  editor={Bernard, Jürgen and Angelini, Marco},
  author={Metz, Yannick and Schlegel, Udo and Seebacher, Daniel and El-Assady, Mennatallah and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57922">
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Seebacher, Daniel</dc:contributor>
    <dcterms:issued>2022</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Metz, Yannick</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57922/1/Metz_2-4e7iwot98daw9.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57922/1/Metz_2-4e7iwot98daw9.pdf"/>
    <dc:creator>Seebacher, Daniel</dc:creator>
    <dc:creator>Schlegel, Udo</dc:creator>
    <dc:creator>El-Assady, Mennatallah</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-07-04T11:34:54Z</dcterms:available>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Schlegel, Udo</dc:contributor>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>El-Assady, Mennatallah</dc:contributor>
    <dc:creator>Metz, Yannick</dc:creator>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:title>A Comprehensive Workflow for Effective Imitation and Reinforcement Learning with Visual Analytics</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-07-04T11:34:54Z</dc:date>
    <dcterms:abstract xml:lang="eng">Multiple challenges hinder the application of reinforcement learning algorithms in experimental and real-world use cases even with recent successes in such areas. Such challenges occur at different stages of the development and deployment of such models. While reinforcement learning workflows share similarities with machine learning approaches, we argue that distinct challenges can be tackled and overcome using visual analytic concepts. Thus, we propose a comprehensive workflow for reinforcement learning and present an implementation of our workflow incorporating visual analytic concepts integrating tailored views and visualizations for different stages and tasks of the workflow.</dcterms:abstract>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57922"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen