A Comprehensive Workflow for Effective Imitation and Reinforcement Learning with Visual Analytics

Lade...
Vorschaubild
Dateien
Metz_2-4e7iwot98daw9.pdf
Metz_2-4e7iwot98daw9.pdfGröße: 1.4 MBDownloads: 219
Datum
2022
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
BERNARD, Jürgen, ed., Marco ANGELINI, ed.. EuroVis Workshop on Visual Analytics (EuroVA 2022). Goslar: The Eurographics Association, 2022, pp. 19-23. ISBN 978-3-03868-183-0. Available under: doi: 10.2312/eurova.20221074
Zusammenfassung

Multiple challenges hinder the application of reinforcement learning algorithms in experimental and real-world use cases even with recent successes in such areas. Such challenges occur at different stages of the development and deployment of such models. While reinforcement learning workflows share similarities with machine learning approaches, we argue that distinct challenges can be tackled and overcome using visual analytic concepts. Thus, we propose a comprehensive workflow for reinforcement learning and present an implementation of our workflow incorporating visual analytic concepts integrating tailored views and visualizations for different stages and tasks of the workflow.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
13th International EuroVis Workshop on Visual Analytics (EuroVA 2022), 13. Juni 2022, Rome, Italy
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690METZ, Yannick, Udo SCHLEGEL, Daniel SEEBACHER, Mennatallah EL-ASSADY, Daniel A. KEIM, 2022. A Comprehensive Workflow for Effective Imitation and Reinforcement Learning with Visual Analytics. 13th International EuroVis Workshop on Visual Analytics (EuroVA 2022). Rome, Italy, 13. Juni 2022. In: BERNARD, Jürgen, ed., Marco ANGELINI, ed.. EuroVis Workshop on Visual Analytics (EuroVA 2022). Goslar: The Eurographics Association, 2022, pp. 19-23. ISBN 978-3-03868-183-0. Available under: doi: 10.2312/eurova.20221074
BibTex
@inproceedings{Metz2022Compr-57922,
  year={2022},
  doi={10.2312/eurova.20221074},
  title={A Comprehensive Workflow for Effective Imitation and Reinforcement Learning with Visual Analytics},
  isbn={978-3-03868-183-0},
  publisher={The Eurographics Association},
  address={Goslar},
  booktitle={EuroVis Workshop on Visual Analytics (EuroVA 2022)},
  pages={19--23},
  editor={Bernard, Jürgen and Angelini, Marco},
  author={Metz, Yannick and Schlegel, Udo and Seebacher, Daniel and El-Assady, Mennatallah and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57922">
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Seebacher, Daniel</dc:contributor>
    <dcterms:issued>2022</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Metz, Yannick</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57922/1/Metz_2-4e7iwot98daw9.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57922/1/Metz_2-4e7iwot98daw9.pdf"/>
    <dc:creator>Seebacher, Daniel</dc:creator>
    <dc:creator>Schlegel, Udo</dc:creator>
    <dc:creator>El-Assady, Mennatallah</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-07-04T11:34:54Z</dcterms:available>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Schlegel, Udo</dc:contributor>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>El-Assady, Mennatallah</dc:contributor>
    <dc:creator>Metz, Yannick</dc:creator>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:title>A Comprehensive Workflow for Effective Imitation and Reinforcement Learning with Visual Analytics</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-07-04T11:34:54Z</dc:date>
    <dcterms:abstract xml:lang="eng">Multiple challenges hinder the application of reinforcement learning algorithms in experimental and real-world use cases even with recent successes in such areas. Such challenges occur at different stages of the development and deployment of such models. While reinforcement learning workflows share similarities with machine learning approaches, we argue that distinct challenges can be tackled and overcome using visual analytic concepts. Thus, we propose a comprehensive workflow for reinforcement learning and present an implementation of our workflow incorporating visual analytic concepts integrating tailored views and visualizations for different stages and tasks of the workflow.</dcterms:abstract>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57922"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen