Attracting sets in index 2 Differential Algebraic Equations and in their Runge-Kutta Discretizations

Loading...
Thumbnail Image
Date
2001
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
Konstanzer Schriften in Mathematik und Informatik; 152
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Preprint
Publication status
Published in
Abstract
We analyze Runge-Kutta discretizations applied to index 2 differential algebraic equations (DAE's) in the vicinity of attracting sets. We compare the geometric properties of the numerical and the exact solutions and show that projected and half-explicit Runge-Kutta methods reproduce the qualitative features of the continuous system correctly. The proof combines invariant manifold results of Schropp and classical results for discretized ordinary differential equations of Kloeden, Lorenz.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690SCHROPP, Johannes, 2001. Attracting sets in index 2 Differential Algebraic Equations and in their Runge-Kutta Discretizations
BibTex
@unpublished{Schropp2001Attra-579,
  year={2001},
  title={Attracting sets in index 2 Differential Algebraic Equations and in their Runge-Kutta Discretizations},
  author={Schropp, Johannes}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/579">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2001</dcterms:issued>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:07Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">We analyze Runge-Kutta discretizations applied to index 2 differential algebraic equations (DAE's) in the vicinity of attracting sets. We compare the geometric properties of the numerical and the exact solutions and show that projected and half-explicit Runge-Kutta methods reproduce the qualitative features of the continuous system correctly. The proof combines invariant manifold results of Schropp and classical results for discretized ordinary differential equations of Kloeden, Lorenz.</dcterms:abstract>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Schropp, Johannes</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:07Z</dc:date>
    <dc:contributor>Schropp, Johannes</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/579/1/preprint_152.pdf"/>
    <dc:format>application/pdf</dc:format>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/579/1/preprint_152.pdf"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>Attracting sets in index 2 Differential Algebraic Equations and in their Runge-Kutta Discretizations</dcterms:title>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/579"/>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed