Publikation:

Asymptotic Behavior of Discontinuous Solutions in 3-D Thermoelasticity with Second Sound

Lade...
Vorschaubild

Dateien

preprint_233.pdf
preprint_233.pdfGröße: 413.82 KBDownloads: 181

Datum

2007

Autor:innen

Wang, Ya-Guang

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published

Erschienen in

Zusammenfassung

This paper is devoted to the study of the Cauchy problem for linear and semilinear thermoelastic systems with second sound in three space dimensions with discontinuous initial data. Due to Cattaneo's law, replacing Fourier's law for heat conduction, the thermoelastic system with second sound is hyperbolic. We investigate the behavior of discontinuous solutions as the relaxation parameter tends to zero, which corresponds to a formal convergence of the system to the hyperbolic-parabolic type of classical thermoelasticity. By studying expansions with respect to the relaxation parameter of the jumps of the potential part of the system on the evolving characteristic surfaces, we obtain that the jump of the temperature goes to zero while the jumps of the heat flux and the gradient of the potential part of the elastic wave are propagated along the characteristic curves of the elastic fields when the relaxation parameter goes to zero. An interesting phenomenon is when time goes to infinity, the behavior will depend on the mean curvature of the initial surface of discontinuity. These jumps decay exponentially when time goes to infinity, more rapidly for smaller heat conductive coefficient in linear problems and in nonlinear problems when certain growth conditions are imposed on the nonlinear functions.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690RACKE, Reinhard, Ya-Guang WANG, 2007. Asymptotic Behavior of Discontinuous Solutions in 3-D Thermoelasticity with Second Sound
BibTex
@techreport{Racke2007Asymp-620,
  year={2007},
  series={Konstanzer Schriften in Mathematik und Informatik},
  title={Asymptotic Behavior of Discontinuous Solutions in 3-D Thermoelasticity with Second Sound},
  number={233},
  author={Racke, Reinhard and Wang, Ya-Guang}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/620">
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:15Z</dcterms:available>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/620/1/preprint_233.pdf"/>
    <dc:creator>Racke, Reinhard</dc:creator>
    <dcterms:issued>2007</dcterms:issued>
    <dcterms:abstract xml:lang="eng">This paper is devoted to the study of the Cauchy problem for linear and semilinear thermoelastic systems with second sound in three space dimensions with discontinuous initial data. Due to Cattaneo's law, replacing Fourier's law for heat conduction, the thermoelastic system with second sound is hyperbolic.  We investigate the behavior of discontinuous solutions as the relaxation parameter tends to zero, which corresponds to a formal convergence of the system to the hyperbolic-parabolic type of classical thermoelasticity. By studying expansions with respect to the relaxation parameter  of the jumps of the potential part of the system on the evolving characteristic surfaces, we obtain that the jump of the temperature goes to zero while the jumps of the heat flux and the gradient of the potential part of the elastic wave are propagated along the characteristic curves of the elastic fields when the relaxation parameter goes to zero. An interesting phenomenon is when time goes to infinity, the behavior will depend on the mean curvature of the initial surface of discontinuity. These jumps decay exponentially when time goes to infinity, more rapidly for smaller heat conductive coefficient in linear problems and in nonlinear problems when certain growth conditions are imposed on the nonlinear functions.</dcterms:abstract>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/620/1/preprint_233.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Racke, Reinhard</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:title>Asymptotic Behavior of Discontinuous Solutions in 3-D Thermoelasticity with Second Sound</dcterms:title>
    <dc:rights>terms-of-use</dc:rights>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Wang, Ya-Guang</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/620"/>
    <dc:contributor>Wang, Ya-Guang</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:15Z</dc:date>
    <dc:format>application/pdf</dc:format>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen