Asymptotic Behavior of Discontinuous Solutions in 3-D Thermoelasticity with Second Sound

Lade...
Vorschaubild
Dateien
preprint_233.pdf
preprint_233.pdfGröße: 413.82 KBDownloads: 178
Datum
2007
Autor:innen
Wang, Ya-Guang
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published
Erschienen in
Zusammenfassung

This paper is devoted to the study of the Cauchy problem for linear and semilinear thermoelastic systems with second sound in three space dimensions with discontinuous initial data. Due to Cattaneo's law, replacing Fourier's law for heat conduction, the thermoelastic system with second sound is hyperbolic. We investigate the behavior of discontinuous solutions as the relaxation parameter tends to zero, which corresponds to a formal convergence of the system to the hyperbolic-parabolic type of classical thermoelasticity. By studying expansions with respect to the relaxation parameter of the jumps of the potential part of the system on the evolving characteristic surfaces, we obtain that the jump of the temperature goes to zero while the jumps of the heat flux and the gradient of the potential part of the elastic wave are propagated along the characteristic curves of the elastic fields when the relaxation parameter goes to zero. An interesting phenomenon is when time goes to infinity, the behavior will depend on the mean curvature of the initial surface of discontinuity. These jumps decay exponentially when time goes to infinity, more rapidly for smaller heat conductive coefficient in linear problems and in nonlinear problems when certain growth conditions are imposed on the nonlinear functions.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690RACKE, Reinhard, Ya-Guang WANG, 2007. Asymptotic Behavior of Discontinuous Solutions in 3-D Thermoelasticity with Second Sound
BibTex
@techreport{Racke2007Asymp-620,
  year={2007},
  series={Konstanzer Schriften in Mathematik und Informatik},
  title={Asymptotic Behavior of Discontinuous Solutions in 3-D Thermoelasticity with Second Sound},
  number={233},
  author={Racke, Reinhard and Wang, Ya-Guang}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/620">
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:15Z</dcterms:available>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/620/1/preprint_233.pdf"/>
    <dc:creator>Racke, Reinhard</dc:creator>
    <dcterms:issued>2007</dcterms:issued>
    <dcterms:abstract xml:lang="eng">This paper is devoted to the study of the Cauchy problem for linear and semilinear thermoelastic systems with second sound in three space dimensions with discontinuous initial data. Due to Cattaneo's law, replacing Fourier's law for heat conduction, the thermoelastic system with second sound is hyperbolic.  We investigate the behavior of discontinuous solutions as the relaxation parameter tends to zero, which corresponds to a formal convergence of the system to the hyperbolic-parabolic type of classical thermoelasticity. By studying expansions with respect to the relaxation parameter  of the jumps of the potential part of the system on the evolving characteristic surfaces, we obtain that the jump of the temperature goes to zero while the jumps of the heat flux and the gradient of the potential part of the elastic wave are propagated along the characteristic curves of the elastic fields when the relaxation parameter goes to zero. An interesting phenomenon is when time goes to infinity, the behavior will depend on the mean curvature of the initial surface of discontinuity. These jumps decay exponentially when time goes to infinity, more rapidly for smaller heat conductive coefficient in linear problems and in nonlinear problems when certain growth conditions are imposed on the nonlinear functions.</dcterms:abstract>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/620/1/preprint_233.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Racke, Reinhard</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:title>Asymptotic Behavior of Discontinuous Solutions in 3-D Thermoelasticity with Second Sound</dcterms:title>
    <dc:rights>terms-of-use</dc:rights>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Wang, Ya-Guang</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/620"/>
    <dc:contributor>Wang, Ya-Guang</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:15Z</dc:date>
    <dc:format>application/pdf</dc:format>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen