Asymptotic Behavior of Discontinuous Solutions in 3-D Thermoelasticity with Second Sound
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
This paper is devoted to the study of the Cauchy problem for linear and semilinear thermoelastic systems with second sound in three space dimensions with discontinuous initial data. Due to Cattaneo's law, replacing Fourier's law for heat conduction, the thermoelastic system with second sound is hyperbolic. We investigate the behavior of discontinuous solutions as the relaxation parameter tends to zero, which corresponds to a formal convergence of the system to the hyperbolic-parabolic type of classical thermoelasticity. By studying expansions with respect to the relaxation parameter of the jumps of the potential part of the system on the evolving characteristic surfaces, we obtain that the jump of the temperature goes to zero while the jumps of the heat flux and the gradient of the potential part of the elastic wave are propagated along the characteristic curves of the elastic fields when the relaxation parameter goes to zero. An interesting phenomenon is when time goes to infinity, the behavior will depend on the mean curvature of the initial surface of discontinuity. These jumps decay exponentially when time goes to infinity, more rapidly for smaller heat conductive coefficient in linear problems and in nonlinear problems when certain growth conditions are imposed on the nonlinear functions.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
RACKE, Reinhard, Ya-Guang WANG, 2007. Asymptotic Behavior of Discontinuous Solutions in 3-D Thermoelasticity with Second SoundBibTex
@techreport{Racke2007Asymp-620, year={2007}, series={Konstanzer Schriften in Mathematik und Informatik}, title={Asymptotic Behavior of Discontinuous Solutions in 3-D Thermoelasticity with Second Sound}, number={233}, author={Racke, Reinhard and Wang, Ya-Guang} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/620"> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:15Z</dcterms:available> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/620/1/preprint_233.pdf"/> <dc:creator>Racke, Reinhard</dc:creator> <dcterms:issued>2007</dcterms:issued> <dcterms:abstract xml:lang="eng">This paper is devoted to the study of the Cauchy problem for linear and semilinear thermoelastic systems with second sound in three space dimensions with discontinuous initial data. Due to Cattaneo's law, replacing Fourier's law for heat conduction, the thermoelastic system with second sound is hyperbolic. We investigate the behavior of discontinuous solutions as the relaxation parameter tends to zero, which corresponds to a formal convergence of the system to the hyperbolic-parabolic type of classical thermoelasticity. By studying expansions with respect to the relaxation parameter of the jumps of the potential part of the system on the evolving characteristic surfaces, we obtain that the jump of the temperature goes to zero while the jumps of the heat flux and the gradient of the potential part of the elastic wave are propagated along the characteristic curves of the elastic fields when the relaxation parameter goes to zero. An interesting phenomenon is when time goes to infinity, the behavior will depend on the mean curvature of the initial surface of discontinuity. These jumps decay exponentially when time goes to infinity, more rapidly for smaller heat conductive coefficient in linear problems and in nonlinear problems when certain growth conditions are imposed on the nonlinear functions.</dcterms:abstract> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/620/1/preprint_233.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Racke, Reinhard</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:title>Asymptotic Behavior of Discontinuous Solutions in 3-D Thermoelasticity with Second Sound</dcterms:title> <dc:rights>terms-of-use</dc:rights> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Wang, Ya-Guang</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/620"/> <dc:contributor>Wang, Ya-Guang</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:15Z</dc:date> <dc:format>application/pdf</dc:format> </rdf:Description> </rdf:RDF>