On a diophantine representation of the predicate of provability
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Let P be the first-order predicate calculus with a single binary predicate letter. Making use of the techniques of Diophantine coding developed in the works on Hilbert’s tenth problem, we construct a polynomial F(t; x1, . . . , xn) with integral rational coefficients such that the Diophantine equation
F(t0;x1,…, xn)=0
is soluble in integers if and only if the formula of P numbered t0 in the chosen numbering of the formulas of P is provable in P. As an application of that construction, we describe a class of Diophantine equations that can be proved insoluble only under some additional axioms of the axiomatic set theory, for instance, assuming the existence of an inaccessible cardinal. Bibliography: 14 titles.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
CARL, Merlin, Boris Zelikovich MOROZ, 2014. On a diophantine representation of the predicate of provability. In: Journal of Mathematical Sciences. 2014, 199(1), pp. 36-52. ISSN 1072-3374. eISSN 1573-8795. Available under: doi: 10.1007/s10958-014-1830-2BibTex
@article{Carl2014dioph-21343.2, year={2014}, doi={10.1007/s10958-014-1830-2}, title={On a diophantine representation of the predicate of provability}, number={1}, volume={199}, issn={1072-3374}, journal={Journal of Mathematical Sciences}, pages={36--52}, author={Carl, Merlin and Moroz, Boris Zelikovich} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/21343.2"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Moroz, Boris Zelikovich</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:language>eng</dc:language> <dc:contributor>Carl, Merlin</dc:contributor> <dcterms:title>On a diophantine representation of the predicate of provability</dcterms:title> <dcterms:abstract xml:lang="eng">Let P be the first-order predicate calculus with a single binary predicate letter. Making use of the techniques of Diophantine coding developed in the works on Hilbert’s tenth problem, we construct a polynomial F(t; x1, . . . , xn) with integral rational coefficients such that the Diophantine equation<br />F(t<sub>0</sub>;x<sub>1</sub>,…, x<sub>n</sub>)=0<br />is soluble in integers if and only if the formula of P numbered t0 in the chosen numbering of the formulas of P is provable in P. As an application of that construction, we describe a class of Diophantine equations that can be proved insoluble only under some additional axioms of the axiomatic set theory, for instance, assuming the existence of an inaccessible cardinal. Bibliography: 14 titles.</dcterms:abstract> <dc:contributor>Moroz, Boris Zelikovich</dc:contributor> <dcterms:issued>2014</dcterms:issued> <dc:creator>Carl, Merlin</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-05T14:52:02Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-05T14:52:02Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/21343.2"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> </rdf:Description> </rdf:RDF>