Nanoscale imaging magnetometry with diamond spins under ambient conditions

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2008
Autor:innen
Balasubramanian, Gopalakrishnan
Chan, I. Y.
Kolesov, Roman
Al-Hmoud, Mohannad
Tisler, Julia
Shin, Chang
Kim, Changdong
Wojcik, Aleksander
Hemmer, Philip R.
Krueger, Anke
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Nature. 2008, 455, pp. 648-651. Available under: doi: 10.1038/nature07278
Zusammenfassung

Magnetic resonance imaging and optical microscopy are key technologies in the life sciences. For microbiological studies, especially of the inner workings of single cells, optical microscopy is normally used because it easily achieves resolution close to the optical wavelength. But in conventional microscopy, diffraction limits the resolution to about half the wavelength. Recently, it was shown that this limit can be partly overcome by nonlinear imaging techniques, but there is still a barrier to reaching the molecular scale. In contrast, in magnetic resonance imaging the spatial resolution is not determined by diffraction; rather, it is limited by magnetic field sensitivity, and so can in principle go well below the optical wavelength. The sensitivity of magnetic resonance imaging has recently been improved enough to image single cells, and magnetic resonance force microscopy has succeeded in detecting single electrons and small nuclear spin ensembles. However, this technique currently requires cryogenic temperatures, which limit most potential biological applications. Alternatively, single-electron spin states can be detected optically, even at room temperature in some systems. Here we show how magneto-optical spin detection can be used to determine the location of a spin associated with a single nitrogen-vacancy centre in diamond with nanometre resolution under ambient conditions. By placing these nitrogen-vacancy spins in functionalized diamond nanocrystals, biologically specific magnetofluorescent spin markers can be produced. Significantly, we show that this nanometre-scale resolution can be achieved without any probes located closer than typical cell dimensions. Furthermore, we demonstrate the use of a single diamond spin as a scanning probe magnetometer to map nanoscale magnetic field variations. The potential impact of single-spin imaging at room temperature is far-reaching. It could lead to the capability to probe biologically relevant spins in living cells.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
530 Physik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690BALASUBRAMANIAN, Gopalakrishnan, I. Y. CHAN, Roman KOLESOV, Mohannad AL-HMOUD, Julia TISLER, Chang SHIN, Changdong KIM, Aleksander WOJCIK, Philip R. HEMMER, Anke KRUEGER, Tobias HANKE, Alfred LEITENSTORFER, Rudolf BRATSCHITSCH, Fedor JELEZKO, Jörg WRACHTRUP, 2008. Nanoscale imaging magnetometry with diamond spins under ambient conditions. In: Nature. 2008, 455, pp. 648-651. Available under: doi: 10.1038/nature07278
BibTex
@article{Balasubramanian2008Nanos-923,
  year={2008},
  doi={10.1038/nature07278},
  title={Nanoscale imaging magnetometry with diamond spins under ambient conditions},
  volume={455},
  journal={Nature},
  pages={648--651},
  author={Balasubramanian, Gopalakrishnan and Chan, I. Y. and Kolesov, Roman and Al-Hmoud, Mohannad and Tisler, Julia and Shin, Chang and Kim, Changdong and Wojcik, Aleksander and Hemmer, Philip R. and Krueger, Anke and Hanke, Tobias and Leitenstorfer, Alfred and Bratschitsch, Rudolf and Jelezko, Fedor and Wrachtrup, Jörg}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/923">
    <dc:contributor>Kolesov, Roman</dc:contributor>
    <dc:contributor>Kim, Changdong</dc:contributor>
    <dcterms:abstract xml:lang="eng">Magnetic resonance imaging and optical microscopy are key technologies in the life sciences. For microbiological studies, especially of the inner workings of single cells, optical microscopy is normally used because it easily achieves resolution close to the optical wavelength. But in conventional microscopy, diffraction limits the resolution to about half the wavelength. Recently, it was shown that this limit can be partly overcome by nonlinear imaging techniques, but there is still a barrier to reaching the molecular scale. In contrast, in magnetic resonance imaging the spatial resolution is not determined by diffraction; rather, it is limited by magnetic field sensitivity, and so can in principle go well below the optical wavelength. The sensitivity of magnetic resonance imaging has recently been improved enough to image single cells, and magnetic resonance force microscopy  has succeeded in detecting single electrons  and small nuclear spin ensembles. However, this technique currently requires cryogenic temperatures, which limit most potential biological applications. Alternatively, single-electron spin states can be detected optically, even at room temperature in some systems. Here we show how magneto-optical spin detection can be used to determine the location of a spin associated with a single nitrogen-vacancy centre in diamond with nanometre resolution under ambient conditions. By placing these nitrogen-vacancy spins in functionalized diamond nanocrystals, biologically specific magnetofluorescent spin markers can be produced. Significantly, we show that this nanometre-scale resolution can be achieved without any probes located closer than typical cell dimensions. Furthermore, we demonstrate the use of a single diamond spin as a scanning probe magnetometer to map nanoscale magnetic field variations. The potential impact of single-spin imaging at room temperature is far-reaching. It could lead to the capability to probe biologically relevant spins in living cells.</dcterms:abstract>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/923"/>
    <dc:creator>Tisler, Julia</dc:creator>
    <dc:creator>Balasubramanian, Gopalakrishnan</dc:creator>
    <dc:contributor>Chan, I. Y.</dc:contributor>
    <dc:contributor>Bratschitsch, Rudolf</dc:contributor>
    <dc:contributor>Wrachtrup, Jörg</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:52:17Z</dcterms:available>
    <dc:contributor>Hanke, Tobias</dc:contributor>
    <dc:contributor>Shin, Chang</dc:contributor>
    <dc:creator>Jelezko, Fedor</dc:creator>
    <dc:creator>Wrachtrup, Jörg</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:creator>Hemmer, Philip R.</dc:creator>
    <dc:creator>Shin, Chang</dc:creator>
    <dcterms:title>Nanoscale imaging magnetometry with diamond spins under ambient conditions</dcterms:title>
    <dc:contributor>Tisler, Julia</dc:contributor>
    <dcterms:bibliographicCitation>Publ. in: Nature 455 (2008), pp. 648-651</dcterms:bibliographicCitation>
    <dc:contributor>Al-Hmoud, Mohannad</dc:contributor>
    <dc:contributor>Balasubramanian, Gopalakrishnan</dc:contributor>
    <dcterms:issued>2008</dcterms:issued>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Leitenstorfer, Alfred</dc:creator>
    <dc:contributor>Krueger, Anke</dc:contributor>
    <dc:contributor>Jelezko, Fedor</dc:contributor>
    <dc:creator>Wojcik, Aleksander</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:52:17Z</dc:date>
    <dc:creator>Krueger, Anke</dc:creator>
    <dc:creator>Chan, I. Y.</dc:creator>
    <dc:creator>Al-Hmoud, Mohannad</dc:creator>
    <dc:creator>Kolesov, Roman</dc:creator>
    <dc:language>eng</dc:language>
    <dc:creator>Kim, Changdong</dc:creator>
    <dc:contributor>Hemmer, Philip R.</dc:contributor>
    <dc:contributor>Wojcik, Aleksander</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Bratschitsch, Rudolf</dc:creator>
    <dc:creator>Hanke, Tobias</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:contributor>Leitenstorfer, Alfred</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen