Visual Feature Space Analysis for Unsupervised Effectiveness Estimation and Feature Engineering
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The Feature Vector approach is one of the most popular schemes for managing multimedia data. For many data types such as audio, images, or 3D models, an abundance of different Feature Vector extractors are available. The automatic (unsupervised) identification of the best suited feature extractor for a given multimedia database is a difficult and largely unsolved problem. We here address the problem of comparative unsupervised feature space analysis. We propose two interactive approaches for the visual analysis of certain feature space characteristics contributing to estimated discrimination power provided in the respective feature spaces. We apply the approaches on a database of 3D objects represented in different feature spaces, and we experimentally show the methods to be useful (a) for unsupervised comparative estimation of discrimination power and (b) for visually analyzing important properties of the components (dimensions) of the respective feature spaces. The results of the analysis are useful for feature selection and engineering.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SCHRECK, Tobias, Daniel A. KEIM, Christian PANSE, 2006. Visual Feature Space Analysis for Unsupervised Effectiveness Estimation and Feature Engineering. 2006 IEEE International Conference on Multimedia and Expo. Toronto, ON, Canada, 9. Juli 2006 - 9. Juli 2006. In: 2006 IEEE International Conference on Multimedia and Expo. IEEE, 2006, pp. 925-928. ISBN 1-4244-0367-7. Available under: doi: 10.1109/ICME.2006.262671BibTex
@inproceedings{Schreck2006-12Visua-5561, year={2006}, doi={10.1109/ICME.2006.262671}, title={Visual Feature Space Analysis for Unsupervised Effectiveness Estimation and Feature Engineering}, isbn={1-4244-0367-7}, publisher={IEEE}, booktitle={2006 IEEE International Conference on Multimedia and Expo}, pages={925--928}, author={Schreck, Tobias and Keim, Daniel A. and Panse, Christian} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5561"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Panse, Christian</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:25Z</dc:date> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5561"/> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dcterms:abstract xml:lang="eng">The Feature Vector approach is one of the most popular schemes for managing multimedia data. For many data types such as audio, images, or 3D models, an abundance of different Feature Vector extractors are available. The automatic (unsupervised) identification of the best suited feature extractor for a given multimedia database is a difficult and largely unsolved problem. We here address the problem of comparative unsupervised feature space analysis. We propose two interactive approaches for the visual analysis of certain feature space characteristics contributing to estimated discrimination power provided in the respective feature spaces. We apply the approaches on a database of 3D objects represented in different feature spaces, and we experimentally show the methods to be useful (a) for unsupervised comparative estimation of discrimination power and (b) for visually analyzing important properties of the components (dimensions) of the respective feature spaces. The results of the analysis are useful for feature selection and engineering.</dcterms:abstract> <dc:contributor>Schreck, Tobias</dc:contributor> <dc:format>application/pdf</dc:format> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:25Z</dcterms:available> <dcterms:title>Visual Feature Space Analysis for Unsupervised Effectiveness Estimation and Feature Engineering</dcterms:title> <dcterms:bibliographicCitation>First publ. in: Proceedings / 2006 IEEE International Conference on Multimedia and Expo, ICME 2006 : July 9 - 12, 2006, Hilton, Toronto, Toronto, Ontario, Canada, pp. 925-928</dcterms:bibliographicCitation> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> <dc:contributor>Panse, Christian</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5561/1/Visual_Feature_Space_Analysis_for_Unsupervised_Effectiveness.pdf"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5561/1/Visual_Feature_Space_Analysis_for_Unsupervised_Effectiveness.pdf"/> <dc:creator>Schreck, Tobias</dc:creator> <dcterms:issued>2006-12</dcterms:issued> </rdf:Description> </rdf:RDF>