Visual Feature Space Analysis for Unsupervised Effectiveness Estimation and Feature Engineering

Lade...
Vorschaubild
Datum
2006
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
2006 IEEE International Conference on Multimedia and Expo. IEEE, 2006, pp. 925-928. ISBN 1-4244-0367-7. Available under: doi: 10.1109/ICME.2006.262671
Zusammenfassung

The Feature Vector approach is one of the most popular schemes for managing multimedia data. For many data types such as audio, images, or 3D models, an abundance of different Feature Vector extractors are available. The automatic (unsupervised) identification of the best suited feature extractor for a given multimedia database is a difficult and largely unsolved problem. We here address the problem of comparative unsupervised feature space analysis. We propose two interactive approaches for the visual analysis of certain feature space characteristics contributing to estimated discrimination power provided in the respective feature spaces. We apply the approaches on a database of 3D objects represented in different feature spaces, and we experimentally show the methods to be useful (a) for unsupervised comparative estimation of discrimination power and (b) for visually analyzing important properties of the components (dimensions) of the respective feature spaces. The results of the analysis are useful for feature selection and engineering.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
2006 IEEE International Conference on Multimedia and Expo, 9. Juli 2006 - 9. Juli 2006, Toronto, ON, Canada
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690SCHRECK, Tobias, Daniel A. KEIM, Christian PANSE, 2006. Visual Feature Space Analysis for Unsupervised Effectiveness Estimation and Feature Engineering. 2006 IEEE International Conference on Multimedia and Expo. Toronto, ON, Canada, 9. Juli 2006 - 9. Juli 2006. In: 2006 IEEE International Conference on Multimedia and Expo. IEEE, 2006, pp. 925-928. ISBN 1-4244-0367-7. Available under: doi: 10.1109/ICME.2006.262671
BibTex
@inproceedings{Schreck2006-12Visua-5561,
  year={2006},
  doi={10.1109/ICME.2006.262671},
  title={Visual Feature Space Analysis for Unsupervised Effectiveness Estimation and Feature Engineering},
  isbn={1-4244-0367-7},
  publisher={IEEE},
  booktitle={2006 IEEE International Conference on Multimedia and Expo},
  pages={925--928},
  author={Schreck, Tobias and Keim, Daniel A. and Panse, Christian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5561">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Panse, Christian</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:25Z</dc:date>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5561"/>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dcterms:abstract xml:lang="eng">The Feature Vector approach is one of the most popular schemes for managing multimedia data. For many data types such as audio, images, or 3D models, an abundance of different Feature Vector extractors are available. The automatic (unsupervised) identification of the best suited feature extractor for a given multimedia database is a difficult and largely unsolved problem. We here address the problem of comparative unsupervised feature space analysis. We propose two interactive approaches for the visual analysis of certain feature space characteristics contributing to estimated discrimination power provided in the respective feature spaces. We apply the approaches on a database of 3D objects represented in different feature spaces, and we experimentally show the methods to be useful (a) for unsupervised comparative estimation of discrimination power and (b) for visually analyzing important properties of the components (dimensions) of the respective feature spaces. The results of the analysis are useful for feature selection and engineering.</dcterms:abstract>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dc:format>application/pdf</dc:format>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:25Z</dcterms:available>
    <dcterms:title>Visual Feature Space Analysis for Unsupervised Effectiveness Estimation and Feature Engineering</dcterms:title>
    <dcterms:bibliographicCitation>First publ. in:	Proceedings / 2006 IEEE International Conference on Multimedia and Expo, ICME 2006 : July 9 - 12, 2006, Hilton, Toronto, Toronto, Ontario, Canada, pp. 925-928</dcterms:bibliographicCitation>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Panse, Christian</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5561/1/Visual_Feature_Space_Analysis_for_Unsupervised_Effectiveness.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5561/1/Visual_Feature_Space_Analysis_for_Unsupervised_Effectiveness.pdf"/>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dcterms:issued>2006-12</dcterms:issued>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen