Visual Feature Space Analysis for Unsupervised Effectiveness Estimation and Feature Engineering

Loading...
Thumbnail Image
Date
2006
Authors
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
ArXiv-ID
International patent number
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Contribution to a conference collection
Publication status
Published in
2006 IEEE International Conference on Multimedia and Expo. - IEEE, 2006. - pp. 925-928. - ISBN 1-4244-0367-7
Abstract
The Feature Vector approach is one of the most popular schemes for managing multimedia data. For many data types such as audio, images, or 3D models, an abundance of different Feature Vector extractors are available. The automatic (unsupervised) identification of the best suited feature extractor for a given multimedia database is a difficult and largely unsolved problem. We here address the problem of comparative unsupervised feature space analysis. We propose two interactive approaches for the visual analysis of certain feature space characteristics contributing to estimated discrimination power provided in the respective feature spaces. We apply the approaches on a database of 3D objects represented in different feature spaces, and we experimentally show the methods to be useful (a) for unsupervised comparative estimation of discrimination power and (b) for visually analyzing important properties of the components (dimensions) of the respective feature spaces. The results of the analysis are useful for feature selection and engineering.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Conference
2006 IEEE International Conference on Multimedia and Expo, Jul 9, 2006 - Jul 9, 2006, Toronto, ON, Canada
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690SCHRECK, Tobias, Daniel A. KEIM, Christian PANSE, 2006. Visual Feature Space Analysis for Unsupervised Effectiveness Estimation and Feature Engineering. 2006 IEEE International Conference on Multimedia and Expo. Toronto, ON, Canada, Jul 9, 2006 - Jul 9, 2006. In: 2006 IEEE International Conference on Multimedia and Expo. IEEE, pp. 925-928. ISBN 1-4244-0367-7. Available under: doi: 10.1109/ICME.2006.262671
BibTex
@inproceedings{Schreck2006-12Visua-5561,
  year={2006},
  doi={10.1109/ICME.2006.262671},
  title={Visual Feature Space Analysis for Unsupervised Effectiveness Estimation and Feature Engineering},
  isbn={1-4244-0367-7},
  publisher={IEEE},
  booktitle={2006 IEEE International Conference on Multimedia and Expo},
  pages={925--928},
  author={Schreck, Tobias and Keim, Daniel A. and Panse, Christian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5561">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Panse, Christian</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:25Z</dc:date>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5561"/>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dcterms:abstract xml:lang="eng">The Feature Vector approach is one of the most popular schemes for managing multimedia data. For many data types such as audio, images, or 3D models, an abundance of different Feature Vector extractors are available. The automatic (unsupervised) identification of the best suited feature extractor for a given multimedia database is a difficult and largely unsolved problem. We here address the problem of comparative unsupervised feature space analysis. We propose two interactive approaches for the visual analysis of certain feature space characteristics contributing to estimated discrimination power provided in the respective feature spaces. We apply the approaches on a database of 3D objects represented in different feature spaces, and we experimentally show the methods to be useful (a) for unsupervised comparative estimation of discrimination power and (b) for visually analyzing important properties of the components (dimensions) of the respective feature spaces. The results of the analysis are useful for feature selection and engineering.</dcterms:abstract>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dc:format>application/pdf</dc:format>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:25Z</dcterms:available>
    <dcterms:title>Visual Feature Space Analysis for Unsupervised Effectiveness Estimation and Feature Engineering</dcterms:title>
    <dcterms:bibliographicCitation>First publ. in:	Proceedings / 2006 IEEE International Conference on Multimedia and Expo, ICME 2006 : July 9 - 12, 2006, Hilton, Toronto, Toronto, Ontario, Canada, pp. 925-928</dcterms:bibliographicCitation>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Panse, Christian</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5561/1/Visual_Feature_Space_Analysis_for_Unsupervised_Effectiveness.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5561/1/Visual_Feature_Space_Analysis_for_Unsupervised_Effectiveness.pdf"/>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dcterms:issued>2006-12</dcterms:issued>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed