Deep assessment process : Objective assessment process for unilateral peripheral facial paralysis via deep convolutional neural network

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2017
Autor:innen
Guo, Zhe-Xiao
Zhou, Yongjin
Xiang, Jianghuai
Ding, Huijun
Chen, Shifeng
Dan, Guo
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017) : From Nano to Macro. Piscataway, NJ: IEEE, 2017, pp. 135-138. eISSN 1945-8452. ISBN 978-1-5090-1172-8. Available under: doi: 10.1109/ISBI.2017.7950486
Zusammenfassung

Unilateral peripheral facial paralysis (UPFP) is a form of facial nerve paralysis and clinically classified according to facial asymmetry. Prompt and precise assessment is crucial to the neural rehabilitation of UPFP. For UPFP assessment, most of the existing assessment systems are subjective and empirical. Therefore, an objective assessment system will help clinical doctors to obtain a prompt and precise assessment. Distinguishing precisely between degrees of asymmetry is hard using pure pattern recognition methods. Thus, a novel objective assessment process based on convolutional neuronal networks is proposed in this paper that provides an end-to-end solution. This method could alleviate the problem and produced a classification accuracy of 91.25% for predicting the House-Brackmann degree on a given UPFP image dataset.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Unilateral peripheral facial paralysis, objective assessment process, deep convolutional neural network, House-Brackmann facial nerve grading system
Konferenz
2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), 18. Apr. 2017 - 21. Apr. 2017, Melbourne, Australia
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690GUO, Zhe-Xiao, Minmin SHEN, Le DUAN, Yongjin ZHOU, Jianghuai XIANG, Huijun DING, Shifeng CHEN, Oliver DEUSSEN, Guo DAN, 2017. Deep assessment process : Objective assessment process for unilateral peripheral facial paralysis via deep convolutional neural network. 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017). Melbourne, Australia, 18. Apr. 2017 - 21. Apr. 2017. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017) : From Nano to Macro. Piscataway, NJ: IEEE, 2017, pp. 135-138. eISSN 1945-8452. ISBN 978-1-5090-1172-8. Available under: doi: 10.1109/ISBI.2017.7950486
BibTex
@inproceedings{Guo2017-04asses-39638,
  year={2017},
  doi={10.1109/ISBI.2017.7950486},
  title={Deep assessment process : Objective assessment process for unilateral peripheral facial paralysis via deep convolutional neural network},
  isbn={978-1-5090-1172-8},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017) : From Nano to Macro},
  pages={135--138},
  author={Guo, Zhe-Xiao and Shen, Minmin and Duan, Le and Zhou, Yongjin and Xiang, Jianghuai and Ding, Huijun and Chen, Shifeng and Deussen, Oliver and Dan, Guo}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39638">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:contributor>Deussen, Oliver</dc:contributor>
    <dc:creator>Ding, Huijun</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Xiang, Jianghuai</dc:contributor>
    <dc:creator>Dan, Guo</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dcterms:issued>2017-04</dcterms:issued>
    <dc:contributor>Duan, Le</dc:contributor>
    <dc:creator>Zhou, Yongjin</dc:creator>
    <dc:contributor>Shen, Minmin</dc:contributor>
    <dc:creator>Duan, Le</dc:creator>
    <dc:creator>Chen, Shifeng</dc:creator>
    <dc:creator>Xiang, Jianghuai</dc:creator>
    <dc:contributor>Dan, Guo</dc:contributor>
    <dc:creator>Guo, Zhe-Xiao</dc:creator>
    <dc:contributor>Chen, Shifeng</dc:contributor>
    <dc:contributor>Zhou, Yongjin</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Shen, Minmin</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-07-21T12:43:48Z</dc:date>
    <dcterms:title>Deep assessment process : Objective assessment process for unilateral peripheral facial paralysis via deep convolutional neural network</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/39638"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-07-21T12:43:48Z</dcterms:available>
    <dc:creator>Deussen, Oliver</dc:creator>
    <dcterms:abstract xml:lang="eng">Unilateral peripheral facial paralysis (UPFP) is a form of facial nerve paralysis and clinically classified according to facial asymmetry. Prompt and precise assessment is crucial to the neural rehabilitation of UPFP. For UPFP assessment, most of the existing assessment systems are subjective and empirical. Therefore, an objective assessment system will help clinical doctors to obtain a prompt and precise assessment. Distinguishing precisely between degrees of asymmetry is hard using pure pattern recognition methods. Thus, a novel objective assessment process based on convolutional neuronal networks is proposed in this paper that provides an end-to-end solution. This method could alleviate the problem and produced a classification accuracy of 91.25% for predicting the House-Brackmann degree on a given UPFP image dataset.</dcterms:abstract>
    <dc:contributor>Guo, Zhe-Xiao</dc:contributor>
    <dc:contributor>Ding, Huijun</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen