Deep assessment process : Objective assessment process for unilateral peripheral facial paralysis via deep convolutional neural network
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Unilateral peripheral facial paralysis (UPFP) is a form of facial nerve paralysis and clinically classified according to facial asymmetry. Prompt and precise assessment is crucial to the neural rehabilitation of UPFP. For UPFP assessment, most of the existing assessment systems are subjective and empirical. Therefore, an objective assessment system will help clinical doctors to obtain a prompt and precise assessment. Distinguishing precisely between degrees of asymmetry is hard using pure pattern recognition methods. Thus, a novel objective assessment process based on convolutional neuronal networks is proposed in this paper that provides an end-to-end solution. This method could alleviate the problem and produced a classification accuracy of 91.25% for predicting the House-Brackmann degree on a given UPFP image dataset.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GUO, Zhe-Xiao, Minmin SHEN, Le DUAN, Yongjin ZHOU, Jianghuai XIANG, Huijun DING, Shifeng CHEN, Oliver DEUSSEN, Guo DAN, 2017. Deep assessment process : Objective assessment process for unilateral peripheral facial paralysis via deep convolutional neural network. 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017). Melbourne, Australia, 18. Apr. 2017 - 21. Apr. 2017. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017) : From Nano to Macro. Piscataway, NJ: IEEE, 2017, pp. 135-138. eISSN 1945-8452. ISBN 978-1-5090-1172-8. Available under: doi: 10.1109/ISBI.2017.7950486BibTex
@inproceedings{Guo2017-04asses-39638, year={2017}, doi={10.1109/ISBI.2017.7950486}, title={Deep assessment process : Objective assessment process for unilateral peripheral facial paralysis via deep convolutional neural network}, isbn={978-1-5090-1172-8}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017) : From Nano to Macro}, pages={135--138}, author={Guo, Zhe-Xiao and Shen, Minmin and Duan, Le and Zhou, Yongjin and Xiang, Jianghuai and Ding, Huijun and Chen, Shifeng and Deussen, Oliver and Dan, Guo} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39638"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dc:contributor>Deussen, Oliver</dc:contributor> <dc:creator>Ding, Huijun</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dc:contributor>Xiang, Jianghuai</dc:contributor> <dc:creator>Dan, Guo</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dcterms:issued>2017-04</dcterms:issued> <dc:contributor>Duan, Le</dc:contributor> <dc:creator>Zhou, Yongjin</dc:creator> <dc:contributor>Shen, Minmin</dc:contributor> <dc:creator>Duan, Le</dc:creator> <dc:creator>Chen, Shifeng</dc:creator> <dc:creator>Xiang, Jianghuai</dc:creator> <dc:contributor>Dan, Guo</dc:contributor> <dc:creator>Guo, Zhe-Xiao</dc:creator> <dc:contributor>Chen, Shifeng</dc:contributor> <dc:contributor>Zhou, Yongjin</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Shen, Minmin</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-07-21T12:43:48Z</dc:date> <dcterms:title>Deep assessment process : Objective assessment process for unilateral peripheral facial paralysis via deep convolutional neural network</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/39638"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-07-21T12:43:48Z</dcterms:available> <dc:creator>Deussen, Oliver</dc:creator> <dcterms:abstract xml:lang="eng">Unilateral peripheral facial paralysis (UPFP) is a form of facial nerve paralysis and clinically classified according to facial asymmetry. Prompt and precise assessment is crucial to the neural rehabilitation of UPFP. For UPFP assessment, most of the existing assessment systems are subjective and empirical. Therefore, an objective assessment system will help clinical doctors to obtain a prompt and precise assessment. Distinguishing precisely between degrees of asymmetry is hard using pure pattern recognition methods. Thus, a novel objective assessment process based on convolutional neuronal networks is proposed in this paper that provides an end-to-end solution. This method could alleviate the problem and produced a classification accuracy of 91.25% for predicting the House-Brackmann degree on a given UPFP image dataset.</dcterms:abstract> <dc:contributor>Guo, Zhe-Xiao</dc:contributor> <dc:contributor>Ding, Huijun</dc:contributor> </rdf:Description> </rdf:RDF>