Deep assessment process : Objective assessment process for unilateral peripheral facial paralysis via deep convolutional neural network
Deep assessment process : Objective assessment process for unilateral peripheral facial paralysis via deep convolutional neural network
No Thumbnail Available
Files
There are no files associated with this item.
Date
2017
Authors
Guo, Zhe-Xiao
Zhou, Yongjin
Xiang, Jianghuai
Ding, Huijun
Chen, Shifeng
Dan, Guo
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
International patent number
Link to the license
oops
EU project number
Project
Open Access publication
Title in another language
Publication type
Contribution to a conference collection
Publication status
Published
Published in
2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017) : From Nano to Macro. - Piscataway, NJ : IEEE, 2017. - pp. 135-138. - eISSN 1945-8452. - ISBN 978-1-5090-1172-8
Abstract
Unilateral peripheral facial paralysis (UPFP) is a form of facial nerve paralysis and clinically classified according to facial asymmetry. Prompt and precise assessment is crucial to the neural rehabilitation of UPFP. For UPFP assessment, most of the existing assessment systems are subjective and empirical. Therefore, an objective assessment system will help clinical doctors to obtain a prompt and precise assessment. Distinguishing precisely between degrees of asymmetry is hard using pure pattern recognition methods. Thus, a novel objective assessment process based on convolutional neuronal networks is proposed in this paper that provides an end-to-end solution. This method could alleviate the problem and produced a classification accuracy of 91.25% for predicting the House-Brackmann degree on a given UPFP image dataset.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Unilateral peripheral facial paralysis, objective assessment process, deep convolutional neural network, House-Brackmann facial nerve grading system
Conference
2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), Apr 18, 2017 - Apr 21, 2017, Melbourne, Australia
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
GUO, Zhe-Xiao, Minmin SHEN, Le DUAN, Yongjin ZHOU, Jianghuai XIANG, Huijun DING, Shifeng CHEN, Oliver DEUSSEN, Guo DAN, 2017. Deep assessment process : Objective assessment process for unilateral peripheral facial paralysis via deep convolutional neural network. 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017). Melbourne, Australia, Apr 18, 2017 - Apr 21, 2017. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017) : From Nano to Macro. Piscataway, NJ:IEEE, pp. 135-138. eISSN 1945-8452. ISBN 978-1-5090-1172-8. Available under: doi: 10.1109/ISBI.2017.7950486BibTex
@inproceedings{Guo2017-04asses-39638, year={2017}, doi={10.1109/ISBI.2017.7950486}, title={Deep assessment process : Objective assessment process for unilateral peripheral facial paralysis via deep convolutional neural network}, isbn={978-1-5090-1172-8}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017) : From Nano to Macro}, pages={135--138}, author={Guo, Zhe-Xiao and Shen, Minmin and Duan, Le and Zhou, Yongjin and Xiang, Jianghuai and Ding, Huijun and Chen, Shifeng and Deussen, Oliver and Dan, Guo} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39638"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dc:contributor>Deussen, Oliver</dc:contributor> <dc:creator>Ding, Huijun</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dc:contributor>Xiang, Jianghuai</dc:contributor> <dc:creator>Dan, Guo</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dcterms:issued>2017-04</dcterms:issued> <dc:contributor>Duan, Le</dc:contributor> <dc:creator>Zhou, Yongjin</dc:creator> <dc:contributor>Shen, Minmin</dc:contributor> <dc:creator>Duan, Le</dc:creator> <dc:creator>Chen, Shifeng</dc:creator> <dc:creator>Xiang, Jianghuai</dc:creator> <dc:contributor>Dan, Guo</dc:contributor> <dc:creator>Guo, Zhe-Xiao</dc:creator> <dc:contributor>Chen, Shifeng</dc:contributor> <dc:contributor>Zhou, Yongjin</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Shen, Minmin</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-07-21T12:43:48Z</dc:date> <dcterms:title>Deep assessment process : Objective assessment process for unilateral peripheral facial paralysis via deep convolutional neural network</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/39638"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-07-21T12:43:48Z</dcterms:available> <dc:creator>Deussen, Oliver</dc:creator> <dcterms:abstract xml:lang="eng">Unilateral peripheral facial paralysis (UPFP) is a form of facial nerve paralysis and clinically classified according to facial asymmetry. Prompt and precise assessment is crucial to the neural rehabilitation of UPFP. For UPFP assessment, most of the existing assessment systems are subjective and empirical. Therefore, an objective assessment system will help clinical doctors to obtain a prompt and precise assessment. Distinguishing precisely between degrees of asymmetry is hard using pure pattern recognition methods. Thus, a novel objective assessment process based on convolutional neuronal networks is proposed in this paper that provides an end-to-end solution. This method could alleviate the problem and produced a classification accuracy of 91.25% for predicting the House-Brackmann degree on a given UPFP image dataset.</dcterms:abstract> <dc:contributor>Guo, Zhe-Xiao</dc:contributor> <dc:contributor>Ding, Huijun</dc:contributor> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes