Publikation:

Deep assessment process : Objective assessment process for unilateral peripheral facial paralysis via deep convolutional neural network

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2017

Autor:innen

Guo, Zhe-Xiao
Zhou, Yongjin
Xiang, Jianghuai
Ding, Huijun
Chen, Shifeng
Dan, Guo

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017) : From Nano to Macro. Piscataway, NJ: IEEE, 2017, pp. 135-138. eISSN 1945-8452. ISBN 978-1-5090-1172-8. Available under: doi: 10.1109/ISBI.2017.7950486

Zusammenfassung

Unilateral peripheral facial paralysis (UPFP) is a form of facial nerve paralysis and clinically classified according to facial asymmetry. Prompt and precise assessment is crucial to the neural rehabilitation of UPFP. For UPFP assessment, most of the existing assessment systems are subjective and empirical. Therefore, an objective assessment system will help clinical doctors to obtain a prompt and precise assessment. Distinguishing precisely between degrees of asymmetry is hard using pure pattern recognition methods. Thus, a novel objective assessment process based on convolutional neuronal networks is proposed in this paper that provides an end-to-end solution. This method could alleviate the problem and produced a classification accuracy of 91.25% for predicting the House-Brackmann degree on a given UPFP image dataset.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Unilateral peripheral facial paralysis, objective assessment process, deep convolutional neural network, House-Brackmann facial nerve grading system

Konferenz

2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), 18. Apr. 2017 - 21. Apr. 2017, Melbourne, Australia
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690GUO, Zhe-Xiao, Minmin SHEN, Le DUAN, Yongjin ZHOU, Jianghuai XIANG, Huijun DING, Shifeng CHEN, Oliver DEUSSEN, Guo DAN, 2017. Deep assessment process : Objective assessment process for unilateral peripheral facial paralysis via deep convolutional neural network. 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017). Melbourne, Australia, 18. Apr. 2017 - 21. Apr. 2017. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017) : From Nano to Macro. Piscataway, NJ: IEEE, 2017, pp. 135-138. eISSN 1945-8452. ISBN 978-1-5090-1172-8. Available under: doi: 10.1109/ISBI.2017.7950486
BibTex
@inproceedings{Guo2017-04asses-39638,
  year={2017},
  doi={10.1109/ISBI.2017.7950486},
  title={Deep assessment process : Objective assessment process for unilateral peripheral facial paralysis via deep convolutional neural network},
  isbn={978-1-5090-1172-8},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017) : From Nano to Macro},
  pages={135--138},
  author={Guo, Zhe-Xiao and Shen, Minmin and Duan, Le and Zhou, Yongjin and Xiang, Jianghuai and Ding, Huijun and Chen, Shifeng and Deussen, Oliver and Dan, Guo}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39638">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:contributor>Deussen, Oliver</dc:contributor>
    <dc:creator>Ding, Huijun</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Xiang, Jianghuai</dc:contributor>
    <dc:creator>Dan, Guo</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dcterms:issued>2017-04</dcterms:issued>
    <dc:contributor>Duan, Le</dc:contributor>
    <dc:creator>Zhou, Yongjin</dc:creator>
    <dc:contributor>Shen, Minmin</dc:contributor>
    <dc:creator>Duan, Le</dc:creator>
    <dc:creator>Chen, Shifeng</dc:creator>
    <dc:creator>Xiang, Jianghuai</dc:creator>
    <dc:contributor>Dan, Guo</dc:contributor>
    <dc:creator>Guo, Zhe-Xiao</dc:creator>
    <dc:contributor>Chen, Shifeng</dc:contributor>
    <dc:contributor>Zhou, Yongjin</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Shen, Minmin</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-07-21T12:43:48Z</dc:date>
    <dcterms:title>Deep assessment process : Objective assessment process for unilateral peripheral facial paralysis via deep convolutional neural network</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/39638"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-07-21T12:43:48Z</dcterms:available>
    <dc:creator>Deussen, Oliver</dc:creator>
    <dcterms:abstract xml:lang="eng">Unilateral peripheral facial paralysis (UPFP) is a form of facial nerve paralysis and clinically classified according to facial asymmetry. Prompt and precise assessment is crucial to the neural rehabilitation of UPFP. For UPFP assessment, most of the existing assessment systems are subjective and empirical. Therefore, an objective assessment system will help clinical doctors to obtain a prompt and precise assessment. Distinguishing precisely between degrees of asymmetry is hard using pure pattern recognition methods. Thus, a novel objective assessment process based on convolutional neuronal networks is proposed in this paper that provides an end-to-end solution. This method could alleviate the problem and produced a classification accuracy of 91.25% for predicting the House-Brackmann degree on a given UPFP image dataset.</dcterms:abstract>
    <dc:contributor>Guo, Zhe-Xiao</dc:contributor>
    <dc:contributor>Ding, Huijun</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen