Control of Positive and Negative Magnetoresistance in Iron Oxide–Iron Nanocomposite Thin Films for Tunable Magnetoelectric Nanodevices

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2020
Autor:innen
Nichterwitz, Martin
Honnali, Shashank
Zehner, Jonas
Schneider, Sebastian
Pohl, Darius
Schiemenz, Sandra
Nielsch, Kornelius
Leistner, Karin
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
European Union (EU): 861145
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
ACS Applied Electronic Materials. ACS Publications. 2020, 2(8), pp. 2543-2549. eISSN 2637-6113. Available under: doi: 10.1021/acsaelm.0c00448
Zusammenfassung

The perspective of energy-efficient and tunable functional magnetic nanostructures has triggered research efforts in the fields of voltage control of magnetism and spintronics. We investigate the magnetotransport properties of nanocomposite iron oxide/iron thin films with a nominal iron thickness of 5–50 nm and find a positive magnetoresistance at small thicknesses. The highest magnetoresistance was found for 30 nm Fe with +1.1% at 3 T. This anomalous behavior is attributed to the presence of Fe3O4–Fe nanocomposite regions due to grain boundary oxidation. At the Fe3O4/Fe interfaces, spin-polarized electrons in the magnetite can be scattered and reoriented. A crossover to negative magnetoresistance (−0.11%) is achieved at a larger thickness (>40 nm) when interface scattering effects become negligible as more current flows through the iron layer. Electrolytic gating of this system induces voltage-triggered redox reactions in the Fe3O4 regions and thereby enables voltage-tuning of the magnetoresistance with the locally oxidized regions as the active tuning elements. In the low-magnetic-field region (<1 T), a crossover from positive to negative magnetoresistance is achieved by a voltage change of only 1.72 V. At 3 T, a relative change of magnetoresistance about −45% during reduction was achieved for the 30 nm Fe sample. The present low-voltage approach signifies a step forward to practical and tunable room-temperature magnetoresistance-based nanodevices, which can boost the development of nanoscale and energy-efficient magnetic field sensors with high sensitivity, magnetic memories, and magnetoelectric devices in general.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
530 Physik
Schlagwörter
magnetoresistance, voltage control of magnetism, magneto-ionic control, magnetite, iron films
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690NICHTERWITZ, Martin, Shashank HONNALI, Jonas ZEHNER, Sebastian SCHNEIDER, Darius POHL, Sandra SCHIEMENZ, Sebastian T. B. GOENNENWEIN, Kornelius NIELSCH, Karin LEISTNER, 2020. Control of Positive and Negative Magnetoresistance in Iron Oxide–Iron Nanocomposite Thin Films for Tunable Magnetoelectric Nanodevices. In: ACS Applied Electronic Materials. ACS Publications. 2020, 2(8), pp. 2543-2549. eISSN 2637-6113. Available under: doi: 10.1021/acsaelm.0c00448
BibTex
@article{Nichterwitz2020Contr-52374,
  year={2020},
  doi={10.1021/acsaelm.0c00448},
  title={Control of Positive and Negative Magnetoresistance in Iron Oxide–Iron Nanocomposite Thin Films for Tunable Magnetoelectric Nanodevices},
  number={8},
  volume={2},
  journal={ACS Applied Electronic Materials},
  pages={2543--2549},
  author={Nichterwitz, Martin and Honnali, Shashank and Zehner, Jonas and Schneider, Sebastian and Pohl, Darius and Schiemenz, Sandra and Goennenwein, Sebastian T. B. and Nielsch, Kornelius and Leistner, Karin}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52374">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-13T10:24:32Z</dcterms:available>
    <dc:creator>Honnali, Shashank</dc:creator>
    <dc:contributor>Schiemenz, Sandra</dc:contributor>
    <dc:creator>Zehner, Jonas</dc:creator>
    <dc:creator>Leistner, Karin</dc:creator>
    <dc:contributor>Honnali, Shashank</dc:contributor>
    <dc:contributor>Goennenwein, Sebastian T. B.</dc:contributor>
    <dc:contributor>Nielsch, Kornelius</dc:contributor>
    <dc:contributor>Nichterwitz, Martin</dc:contributor>
    <dc:creator>Goennenwein, Sebastian T. B.</dc:creator>
    <dcterms:title>Control of Positive and Negative Magnetoresistance in Iron Oxide–Iron Nanocomposite Thin Films for Tunable Magnetoelectric Nanodevices</dcterms:title>
    <dc:creator>Pohl, Darius</dc:creator>
    <dc:creator>Nichterwitz, Martin</dc:creator>
    <dc:contributor>Leistner, Karin</dc:contributor>
    <dc:creator>Nielsch, Kornelius</dc:creator>
    <dc:creator>Schneider, Sebastian</dc:creator>
    <dcterms:issued>2020</dcterms:issued>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Schneider, Sebastian</dc:contributor>
    <dc:contributor>Pohl, Darius</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract xml:lang="eng">The perspective of energy-efficient and tunable functional magnetic nanostructures has triggered research efforts in the fields of voltage control of magnetism and spintronics. We investigate the magnetotransport properties of nanocomposite iron oxide/iron thin films with a nominal iron thickness of 5–50 nm and find a positive magnetoresistance at small thicknesses. The highest magnetoresistance was found for 30 nm Fe with +1.1% at 3 T. This anomalous behavior is attributed to the presence of Fe&lt;sub&gt;3&lt;/sub&gt;O&lt;sub&gt;4&lt;/sub&gt;–Fe nanocomposite regions due to grain boundary oxidation. At the Fe&lt;sub&gt;3&lt;/sub&gt;O&lt;sub&gt;4&lt;/sub&gt;/Fe interfaces, spin-polarized electrons in the magnetite can be scattered and reoriented. A crossover to negative magnetoresistance (−0.11%) is achieved at a larger thickness (&gt;40 nm) when interface scattering effects become negligible as more current flows through the iron layer. Electrolytic gating of this system induces voltage-triggered redox reactions in the Fe&lt;sub&gt;3&lt;/sub&gt;O&lt;sub&gt;4&lt;/sub&gt; regions and thereby enables voltage-tuning of the magnetoresistance with the locally oxidized regions as the active tuning elements. In the low-magnetic-field region (&lt;1 T), a crossover from positive to negative magnetoresistance is achieved by a voltage change of only 1.72 V. At 3 T, a relative change of magnetoresistance about −45% during reduction was achieved for the 30 nm Fe sample. The present low-voltage approach signifies a step forward to practical and tunable room-temperature magnetoresistance-based nanodevices, which can boost the development of nanoscale and energy-efficient magnetic field sensors with high sensitivity, magnetic memories, and magnetoelectric devices in general.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52374"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Schiemenz, Sandra</dc:creator>
    <dc:contributor>Zehner, Jonas</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-13T10:24:32Z</dc:date>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen