Publikation:

Synergies of soft computing and statistics for intelligent data analysis

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2013

Autor:innen

Herausgeber:innen

Kruse, Rudolf
Moewes, Christian
Gil, Maria Angeles
Grzegorzewiski, Przemyslaw
Hryniewicz, Olgierd
Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

978-3-642-33041-4
Bibliografische Daten

Verlag

Berlin [u.a.] : Springer

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Sammelband
Publikationsstatus
Published

Erschienen in

Zusammenfassung

In recent years there has been a growing interest to extend classical methods for data analysis. The aim is to allow a more flexible modeling of phenomena such as uncertainty, imprecision or ignorance. Such extensions of classical probability theory and statistics are useful in many real-life situations, since uncertainties in data are not only present in the form of randomness - various types of incomplete or subjective information have to be handled. About twelve years ago the idea of strengthening the dialogue between the various research communities in the field of data analysis was born and resulted in the International Conference Series on Soft Methods in Probability and Statistics (SMPS). This book gathers contributions presented at the SMPS'2012 held in Konstanz, Germany. Its aim is to present recent results illustrating new trends in intelligent data analysis. It gives a comprehensive overview of current research into the fusion of soft computing methods with probability and statistics. Synergies of both fields might improve intelligent data analysis methods in terms of robustness to noise and applicability to larger datasets, while being able to efficiently obtain understandable solutions of real-world problems.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KRUSE, Rudolf, ed., Michael R. BERTHOLD, ed., Christian MOEWES, ed., Maria Angeles GIL, ed., Przemyslaw GRZEGORZEWISKI, ed., Olgierd HRYNIEWICZ, ed., 2013. Synergies of soft computing and statistics for intelligent data analysis. Berlin [u.a.] : Springer. ISBN 978-3-642-33041-4
BibTex
@book{Kruse2013Syner-24314,
  year={2013},
  doi={10.1007/978-3-642-33042-1},
  isbn={978-3-642-33041-4},
  publisher={Berlin [u.a.] : Springer},
  title={Synergies of soft computing and statistics for intelligent data analysis},
  editor={Kruse, Rudolf and Berthold, Michael R. and Moewes, Christian and Gil, Maria Angeles and Grzegorzewiski, Przemyslaw and Hryniewicz, Olgierd}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24314">
    <dcterms:abstract xml:lang="eng">In recent years there has been a growing interest to extend classical methods for data analysis. The aim is to allow a more flexible modeling of phenomena such as uncertainty, imprecision or ignorance. Such extensions of classical probability theory and statistics are useful in many real-life situations, since uncertainties in data are not only present in the form of randomness - various types of incomplete or subjective information have to be handled. About twelve years ago the idea of strengthening the dialogue between the various research communities in the field of data analysis was born and resulted in the International Conference Series on Soft Methods in Probability and Statistics (SMPS). This book gathers contributions presented at the SMPS'2012 held in Konstanz, Germany. Its aim is to present recent results illustrating new trends in intelligent data analysis. It gives a comprehensive overview of current research into the fusion of soft computing methods with probability and statistics. Synergies of both fields might improve intelligent data analysis methods in terms of robustness to noise and applicability to larger datasets, while being able to efficiently obtain understandable solutions of real-world problems.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Kruse, Rudolf</dc:contributor>
    <dc:contributor>Grzegorzewiski, Przemyslaw</dc:contributor>
    <dcterms:issued>2013</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:publisher>Berlin [u.a.] : Springer</dc:publisher>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24314"/>
    <dc:contributor>Hryniewicz, Olgierd</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Berthold, Michael R.</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-08-22T13:38:38Z</dc:date>
    <dc:contributor>Moewes, Christian</dc:contributor>
    <dcterms:title>Synergies of soft computing and statistics for intelligent data analysis</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Gil, Maria Angeles</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-08-22T13:38:38Z</dcterms:available>
    <bibo:issn>978-3-642-33041-4</bibo:issn>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen