Synergies of soft computing and statistics for intelligent data analysis
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In recent years there has been a growing interest to extend classical methods for data analysis. The aim is to allow a more flexible modeling of phenomena such as uncertainty, imprecision or ignorance. Such extensions of classical probability theory and statistics are useful in many real-life situations, since uncertainties in data are not only present in the form of randomness - various types of incomplete or subjective information have to be handled. About twelve years ago the idea of strengthening the dialogue between the various research communities in the field of data analysis was born and resulted in the International Conference Series on Soft Methods in Probability and Statistics (SMPS). This book gathers contributions presented at the SMPS'2012 held in Konstanz, Germany. Its aim is to present recent results illustrating new trends in intelligent data analysis. It gives a comprehensive overview of current research into the fusion of soft computing methods with probability and statistics. Synergies of both fields might improve intelligent data analysis methods in terms of robustness to noise and applicability to larger datasets, while being able to efficiently obtain understandable solutions of real-world problems.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KRUSE, Rudolf, ed., Michael R. BERTHOLD, ed., Christian MOEWES, ed., Maria Angeles GIL, ed., Przemyslaw GRZEGORZEWISKI, ed., Olgierd HRYNIEWICZ, ed., 2013. Synergies of soft computing and statistics for intelligent data analysis. Berlin [u.a.] : Springer. ISBN 978-3-642-33041-4BibTex
@book{Kruse2013Syner-24314, year={2013}, doi={10.1007/978-3-642-33042-1}, isbn={978-3-642-33041-4}, publisher={Berlin [u.a.] : Springer}, title={Synergies of soft computing and statistics for intelligent data analysis}, editor={Kruse, Rudolf and Berthold, Michael R. and Moewes, Christian and Gil, Maria Angeles and Grzegorzewiski, Przemyslaw and Hryniewicz, Olgierd} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24314"> <dcterms:abstract xml:lang="eng">In recent years there has been a growing interest to extend classical methods for data analysis. The aim is to allow a more flexible modeling of phenomena such as uncertainty, imprecision or ignorance. Such extensions of classical probability theory and statistics are useful in many real-life situations, since uncertainties in data are not only present in the form of randomness - various types of incomplete or subjective information have to be handled. About twelve years ago the idea of strengthening the dialogue between the various research communities in the field of data analysis was born and resulted in the International Conference Series on Soft Methods in Probability and Statistics (SMPS). This book gathers contributions presented at the SMPS'2012 held in Konstanz, Germany. Its aim is to present recent results illustrating new trends in intelligent data analysis. It gives a comprehensive overview of current research into the fusion of soft computing methods with probability and statistics. Synergies of both fields might improve intelligent data analysis methods in terms of robustness to noise and applicability to larger datasets, while being able to efficiently obtain understandable solutions of real-world problems.</dcterms:abstract> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Kruse, Rudolf</dc:contributor> <dc:contributor>Grzegorzewiski, Przemyslaw</dc:contributor> <dcterms:issued>2013</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:publisher>Berlin [u.a.] : Springer</dc:publisher> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24314"/> <dc:contributor>Hryniewicz, Olgierd</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Berthold, Michael R.</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-08-22T13:38:38Z</dc:date> <dc:contributor>Moewes, Christian</dc:contributor> <dcterms:title>Synergies of soft computing and statistics for intelligent data analysis</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Gil, Maria Angeles</dc:contributor> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-08-22T13:38:38Z</dcterms:available> <bibo:issn>978-3-642-33041-4</bibo:issn> </rdf:Description> </rdf:RDF>