ModelSpeX : Model Specification Using Explainable Artificial Intelligence Methods
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
European Union (EU): 830892
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Explainable artificial intelligence (XAI) methods aim to reveal the non-transparent decision-making mechanisms of black-box models. The evaluation of insight generated by such XAI methods remains challenging as the applied techniques depend on many factors (e.g., parameters and human interpretation). We propose ModelSpeX, a visual analytics workflow to interactively extract human-centered rule-sets to generate model specifications from black-box models (e.g., neural networks). The workflow enables to reason about the underlying problem, to extract decision rule sets, and to evaluate the suitability of the model for a particular task. An exemplary usage scenario walks an analyst trough the steps of the workflow to show the applicability.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SCHLEGEL, Udo, Eren CAKMAK, Daniel A. KEIM, 2020. ModelSpeX : Model Specification Using Explainable Artificial Intelligence Methods. International Workshop on Machine Learning in Visualisation for Big Data : MLVis 2020. Norrköping, Sweden, 25. Mai 2020 - 29. Mai 2020. In: ARCHAMBAULT, Daniel, Hrsg. und andere. Machine Learning Methods in Visualisation for Big Data 2020. Genf: The Eurographics Association, 2020, S. 7-11. ISBN 978-3-03868-113-7. Verfügbar unter: doi: 10.2312/mlvis.20201100BibTex
@inproceedings{Schlegel2020Model-49721, year={2020}, doi={10.2312/mlvis.20201100}, title={ModelSpeX : Model Specification Using Explainable Artificial Intelligence Methods}, isbn={978-3-03868-113-7}, publisher={The Eurographics Association}, address={Genf}, booktitle={Machine Learning Methods in Visualisation for Big Data 2020}, pages={7--11}, editor={Archambault, Daniel}, author={Schlegel, Udo and Cakmak, Eren and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/49721"> <dcterms:title>ModelSpeX : Model Specification Using Explainable Artificial Intelligence Methods</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">Explainable artificial intelligence (XAI) methods aim to reveal the non-transparent decision-making mechanisms of black-box models. The evaluation of insight generated by such XAI methods remains challenging as the applied techniques depend on many factors (e.g., parameters and human interpretation). We propose ModelSpeX, a visual analytics workflow to interactively extract human-centered rule-sets to generate model specifications from black-box models (e.g., neural networks). The workflow enables to reason about the underlying problem, to extract decision rule sets, and to evaluate the suitability of the model for a particular task. An exemplary usage scenario walks an analyst trough the steps of the workflow to show the applicability.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-05-28T10:03:28Z</dcterms:available> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49721/1/Schlegel_2-qm5kpmaxjly15.pdf"/> <dc:creator>Cakmak, Eren</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Schlegel, Udo</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49721/1/Schlegel_2-qm5kpmaxjly15.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dc:contributor>Schlegel, Udo</dc:contributor> <dcterms:issued>2020</dcterms:issued> <dc:contributor>Cakmak, Eren</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-05-28T10:03:28Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/49721"/> </rdf:Description> </rdf:RDF>