ModelSpeX : Model Specification Using Explainable Artificial Intelligence Methods

Lade...
Vorschaubild
Dateien
Schlegel_2-qm5kpmaxjly15.pdf
Schlegel_2-qm5kpmaxjly15.pdfGröße: 287.22 KBDownloads: 170
Datum
2020
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
ARCHAMBAULT, Daniel, ed. and others. Machine Learning Methods in Visualisation for Big Data 2020. Genf: The Eurographics Association, 2020, pp. 7-11. ISBN 978-3-03868-113-7. Available under: doi: 10.2312/mlvis.20201100
Zusammenfassung

Explainable artificial intelligence (XAI) methods aim to reveal the non-transparent decision-making mechanisms of black-box models. The evaluation of insight generated by such XAI methods remains challenging as the applied techniques depend on many factors (e.g., parameters and human interpretation). We propose ModelSpeX, a visual analytics workflow to interactively extract human-centered rule-sets to generate model specifications from black-box models (e.g., neural networks). The workflow enables to reason about the underlying problem, to extract decision rule sets, and to evaluate the suitability of the model for a particular task. An exemplary usage scenario walks an analyst trough the steps of the workflow to show the applicability.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
International Workshop on Machine Learning in Visualisation for Big Data : MLVis 2020, 25. Mai 2020 - 29. Mai 2020, Norrköping, Sweden
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690SCHLEGEL, Udo, Eren CAKMAK, Daniel A. KEIM, 2020. ModelSpeX : Model Specification Using Explainable Artificial Intelligence Methods. International Workshop on Machine Learning in Visualisation for Big Data : MLVis 2020. Norrköping, Sweden, 25. Mai 2020 - 29. Mai 2020. In: ARCHAMBAULT, Daniel, ed. and others. Machine Learning Methods in Visualisation for Big Data 2020. Genf: The Eurographics Association, 2020, pp. 7-11. ISBN 978-3-03868-113-7. Available under: doi: 10.2312/mlvis.20201100
BibTex
@inproceedings{Schlegel2020Model-49721,
  year={2020},
  doi={10.2312/mlvis.20201100},
  title={ModelSpeX : Model Specification Using Explainable Artificial Intelligence Methods},
  isbn={978-3-03868-113-7},
  publisher={The Eurographics Association},
  address={Genf},
  booktitle={Machine Learning Methods in Visualisation for Big Data 2020},
  pages={7--11},
  editor={Archambault, Daniel},
  author={Schlegel, Udo and Cakmak, Eren and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/49721">
    <dcterms:title>ModelSpeX : Model Specification Using Explainable Artificial Intelligence Methods</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">Explainable artificial intelligence (XAI) methods aim to reveal the non-transparent decision-making mechanisms of black-box models. The evaluation of insight generated by such XAI methods remains challenging as the applied techniques depend on many factors (e.g., parameters and human interpretation). We propose ModelSpeX, a visual analytics workflow to interactively extract human-centered rule-sets to generate model specifications from black-box models (e.g., neural networks). The workflow enables to reason about the underlying problem, to extract decision rule sets, and to evaluate the suitability of the model for a particular task. An exemplary usage scenario walks an analyst trough the steps of the workflow to show the applicability.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-05-28T10:03:28Z</dcterms:available>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49721/1/Schlegel_2-qm5kpmaxjly15.pdf"/>
    <dc:creator>Cakmak, Eren</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Schlegel, Udo</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49721/1/Schlegel_2-qm5kpmaxjly15.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Schlegel, Udo</dc:contributor>
    <dcterms:issued>2020</dcterms:issued>
    <dc:contributor>Cakmak, Eren</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-05-28T10:03:28Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/49721"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet