Publikation:

ModelSpeX : Model Specification Using Explainable Artificial Intelligence Methods

Lade...
Vorschaubild

Dateien

Schlegel_2-qm5kpmaxjly15.pdf
Schlegel_2-qm5kpmaxjly15.pdfGröße: 287.22 KBDownloads: 210

Datum

2020

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Deutsche Forschungsgemeinschaft (DFG): 422037984
European Union (EU): 830892

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

ARCHAMBAULT, Daniel, Hrsg. und andere. Machine Learning Methods in Visualisation for Big Data 2020. Genf: The Eurographics Association, 2020, S. 7-11. ISBN 978-3-03868-113-7. Verfügbar unter: doi: 10.2312/mlvis.20201100

Zusammenfassung

Explainable artificial intelligence (XAI) methods aim to reveal the non-transparent decision-making mechanisms of black-box models. The evaluation of insight generated by such XAI methods remains challenging as the applied techniques depend on many factors (e.g., parameters and human interpretation). We propose ModelSpeX, a visual analytics workflow to interactively extract human-centered rule-sets to generate model specifications from black-box models (e.g., neural networks). The workflow enables to reason about the underlying problem, to extract decision rule sets, and to evaluate the suitability of the model for a particular task. An exemplary usage scenario walks an analyst trough the steps of the workflow to show the applicability.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

International Workshop on Machine Learning in Visualisation for Big Data : MLVis 2020, 25. Mai 2020 - 29. Mai 2020, Norrköping, Sweden
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SCHLEGEL, Udo, Eren CAKMAK, Daniel A. KEIM, 2020. ModelSpeX : Model Specification Using Explainable Artificial Intelligence Methods. International Workshop on Machine Learning in Visualisation for Big Data : MLVis 2020. Norrköping, Sweden, 25. Mai 2020 - 29. Mai 2020. In: ARCHAMBAULT, Daniel, Hrsg. und andere. Machine Learning Methods in Visualisation for Big Data 2020. Genf: The Eurographics Association, 2020, S. 7-11. ISBN 978-3-03868-113-7. Verfügbar unter: doi: 10.2312/mlvis.20201100
BibTex
@inproceedings{Schlegel2020Model-49721,
  year={2020},
  doi={10.2312/mlvis.20201100},
  title={ModelSpeX : Model Specification Using Explainable Artificial Intelligence Methods},
  isbn={978-3-03868-113-7},
  publisher={The Eurographics Association},
  address={Genf},
  booktitle={Machine Learning Methods in Visualisation for Big Data 2020},
  pages={7--11},
  editor={Archambault, Daniel},
  author={Schlegel, Udo and Cakmak, Eren and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/49721">
    <dcterms:title>ModelSpeX : Model Specification Using Explainable Artificial Intelligence Methods</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">Explainable artificial intelligence (XAI) methods aim to reveal the non-transparent decision-making mechanisms of black-box models. The evaluation of insight generated by such XAI methods remains challenging as the applied techniques depend on many factors (e.g., parameters and human interpretation). We propose ModelSpeX, a visual analytics workflow to interactively extract human-centered rule-sets to generate model specifications from black-box models (e.g., neural networks). The workflow enables to reason about the underlying problem, to extract decision rule sets, and to evaluate the suitability of the model for a particular task. An exemplary usage scenario walks an analyst trough the steps of the workflow to show the applicability.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-05-28T10:03:28Z</dcterms:available>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49721/1/Schlegel_2-qm5kpmaxjly15.pdf"/>
    <dc:creator>Cakmak, Eren</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Schlegel, Udo</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49721/1/Schlegel_2-qm5kpmaxjly15.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dc:contributor>Schlegel, Udo</dc:contributor>
    <dcterms:issued>2020</dcterms:issued>
    <dc:contributor>Cakmak, Eren</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-05-28T10:03:28Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/49721"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen