Finding Density Functionals with Machine Learning

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2012
Autor:innen
Snyder, John C.
Hansen, Katja
Müller, Klaus-Robert
Burke, Kieron
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Physical Review Letters. American Physical Society (APS). 2012, 108(25), 253002. ISSN 0031-9007. eISSN 1079-7114. Available under: doi: 10.1103/PhysRevLett.108.253002
Zusammenfassung

Machine learning is used to approximate density functionals. For the model problem of the kinetic energy of noninteracting fermions in 1D, mean absolute errors below 1  kcal/mol on test densities similar to the training set are reached with fewer than 100 training densities. A predictor identifies if a test density is within the interpolation region. Via principal component analysis, a projected functional derivative finds highly accurate self-consistent densities. The challenges for application of our method to real electronic structure problems are discussed.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690SNYDER, John C., Matthias RUPP, Katja HANSEN, Klaus-Robert MÜLLER, Kieron BURKE, 2012. Finding Density Functionals with Machine Learning. In: Physical Review Letters. American Physical Society (APS). 2012, 108(25), 253002. ISSN 0031-9007. eISSN 1079-7114. Available under: doi: 10.1103/PhysRevLett.108.253002
BibTex
@article{Snyder2012-06-22Findi-52164,
  year={2012},
  doi={10.1103/PhysRevLett.108.253002},
  title={Finding Density Functionals with Machine Learning},
  number={25},
  volume={108},
  issn={0031-9007},
  journal={Physical Review Letters},
  author={Snyder, John C. and Rupp, Matthias and Hansen, Katja and Müller, Klaus-Robert and Burke, Kieron},
  note={Article Number: 253002}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52164">
    <dc:creator>Hansen, Katja</dc:creator>
    <dc:creator>Müller, Klaus-Robert</dc:creator>
    <dc:contributor>Snyder, John C.</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Müller, Klaus-Robert</dc:contributor>
    <dc:contributor>Burke, Kieron</dc:contributor>
    <dcterms:title>Finding Density Functionals with Machine Learning</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-17T14:29:21Z</dc:date>
    <dc:creator>Snyder, John C.</dc:creator>
    <dcterms:issued>2012-06-22</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-17T14:29:21Z</dcterms:available>
    <dc:creator>Rupp, Matthias</dc:creator>
    <dcterms:abstract xml:lang="eng">Machine learning is used to approximate density functionals. For the model problem of the kinetic energy of noninteracting fermions in 1D, mean absolute errors below 1  kcal/mol on test densities similar to the training set are reached with fewer than 100 training densities. A predictor identifies if a test density is within the interpolation region. Via principal component analysis, a projected functional derivative finds highly accurate self-consistent densities. The challenges for application of our method to real electronic structure problems are discussed.</dcterms:abstract>
    <dc:contributor>Hansen, Katja</dc:contributor>
    <dc:creator>Burke, Kieron</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Rupp, Matthias</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52164"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja