Publikation:

Finding Density Functionals with Machine Learning

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2012

Autor:innen

Snyder, John C.
Hansen, Katja
Müller, Klaus-Robert
Burke, Kieron

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Physical Review Letters. American Physical Society (APS). 2012, 108(25), 253002. ISSN 0031-9007. eISSN 1079-7114. Available under: doi: 10.1103/PhysRevLett.108.253002

Zusammenfassung

Machine learning is used to approximate density functionals. For the model problem of the kinetic energy of noninteracting fermions in 1D, mean absolute errors below 1  kcal/mol on test densities similar to the training set are reached with fewer than 100 training densities. A predictor identifies if a test density is within the interpolation region. Via principal component analysis, a projected functional derivative finds highly accurate self-consistent densities. The challenges for application of our method to real electronic structure problems are discussed.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SNYDER, John C., Matthias RUPP, Katja HANSEN, Klaus-Robert MÜLLER, Kieron BURKE, 2012. Finding Density Functionals with Machine Learning. In: Physical Review Letters. American Physical Society (APS). 2012, 108(25), 253002. ISSN 0031-9007. eISSN 1079-7114. Available under: doi: 10.1103/PhysRevLett.108.253002
BibTex
@article{Snyder2012-06-22Findi-52164,
  year={2012},
  doi={10.1103/PhysRevLett.108.253002},
  title={Finding Density Functionals with Machine Learning},
  number={25},
  volume={108},
  issn={0031-9007},
  journal={Physical Review Letters},
  author={Snyder, John C. and Rupp, Matthias and Hansen, Katja and Müller, Klaus-Robert and Burke, Kieron},
  note={Article Number: 253002}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52164">
    <dc:creator>Hansen, Katja</dc:creator>
    <dc:creator>Müller, Klaus-Robert</dc:creator>
    <dc:contributor>Snyder, John C.</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Müller, Klaus-Robert</dc:contributor>
    <dc:contributor>Burke, Kieron</dc:contributor>
    <dcterms:title>Finding Density Functionals with Machine Learning</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-17T14:29:21Z</dc:date>
    <dc:creator>Snyder, John C.</dc:creator>
    <dcterms:issued>2012-06-22</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-17T14:29:21Z</dcterms:available>
    <dc:creator>Rupp, Matthias</dc:creator>
    <dcterms:abstract xml:lang="eng">Machine learning is used to approximate density functionals. For the model problem of the kinetic energy of noninteracting fermions in 1D, mean absolute errors below 1  kcal/mol on test densities similar to the training set are reached with fewer than 100 training densities. A predictor identifies if a test density is within the interpolation region. Via principal component analysis, a projected functional derivative finds highly accurate self-consistent densities. The challenges for application of our method to real electronic structure problems are discussed.</dcterms:abstract>
    <dc:contributor>Hansen, Katja</dc:contributor>
    <dc:creator>Burke, Kieron</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Rupp, Matthias</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52164"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen