Finding Density Functionals with Machine Learning
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2012
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Physical Review Letters. American Physical Society (APS). 2012, 108(25), 253002. ISSN 0031-9007. eISSN 1079-7114. Available under: doi: 10.1103/PhysRevLett.108.253002
Zusammenfassung
Machine learning is used to approximate density functionals. For the model problem of the kinetic energy of noninteracting fermions in 1D, mean absolute errors below 1 kcal/mol on test densities similar to the training set are reached with fewer than 100 training densities. A predictor identifies if a test density is within the interpolation region. Via principal component analysis, a projected functional derivative finds highly accurate self-consistent densities. The challenges for application of our method to real electronic structure problems are discussed.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
SNYDER, John C., Matthias RUPP, Katja HANSEN, Klaus-Robert MÜLLER, Kieron BURKE, 2012. Finding Density Functionals with Machine Learning. In: Physical Review Letters. American Physical Society (APS). 2012, 108(25), 253002. ISSN 0031-9007. eISSN 1079-7114. Available under: doi: 10.1103/PhysRevLett.108.253002BibTex
@article{Snyder2012-06-22Findi-52164, year={2012}, doi={10.1103/PhysRevLett.108.253002}, title={Finding Density Functionals with Machine Learning}, number={25}, volume={108}, issn={0031-9007}, journal={Physical Review Letters}, author={Snyder, John C. and Rupp, Matthias and Hansen, Katja and Müller, Klaus-Robert and Burke, Kieron}, note={Article Number: 253002} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52164"> <dc:creator>Hansen, Katja</dc:creator> <dc:creator>Müller, Klaus-Robert</dc:creator> <dc:contributor>Snyder, John C.</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Müller, Klaus-Robert</dc:contributor> <dc:contributor>Burke, Kieron</dc:contributor> <dcterms:title>Finding Density Functionals with Machine Learning</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-17T14:29:21Z</dc:date> <dc:creator>Snyder, John C.</dc:creator> <dcterms:issued>2012-06-22</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-17T14:29:21Z</dcterms:available> <dc:creator>Rupp, Matthias</dc:creator> <dcterms:abstract xml:lang="eng">Machine learning is used to approximate density functionals. For the model problem of the kinetic energy of noninteracting fermions in 1D, mean absolute errors below 1 kcal/mol on test densities similar to the training set are reached with fewer than 100 training densities. A predictor identifies if a test density is within the interpolation region. Via principal component analysis, a projected functional derivative finds highly accurate self-consistent densities. The challenges for application of our method to real electronic structure problems are discussed.</dcterms:abstract> <dc:contributor>Hansen, Katja</dc:contributor> <dc:creator>Burke, Kieron</dc:creator> <dc:rights>terms-of-use</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Rupp, Matthias</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52164"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja