Finding Density Functionals with Machine Learning

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2012
Autor:innen
Snyder, John C.
Hansen, Katja
Müller, Klaus-Robert
Burke, Kieron
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Physical Review Letters. American Physical Society (APS). 2012, 108(25), 253002. ISSN 0031-9007. eISSN 1079-7114. Available under: doi: 10.1103/PhysRevLett.108.253002
Zusammenfassung

Machine learning is used to approximate density functionals. For the model problem of the kinetic energy of noninteracting fermions in 1D, mean absolute errors below 1  kcal/mol on test densities similar to the training set are reached with fewer than 100 training densities. A predictor identifies if a test density is within the interpolation region. Via principal component analysis, a projected functional derivative finds highly accurate self-consistent densities. The challenges for application of our method to real electronic structure problems are discussed.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690SNYDER, John C., Matthias RUPP, Katja HANSEN, Klaus-Robert MÜLLER, Kieron BURKE, 2012. Finding Density Functionals with Machine Learning. In: Physical Review Letters. American Physical Society (APS). 2012, 108(25), 253002. ISSN 0031-9007. eISSN 1079-7114. Available under: doi: 10.1103/PhysRevLett.108.253002
BibTex
@article{Snyder2012-06-22Findi-52164,
  year={2012},
  doi={10.1103/PhysRevLett.108.253002},
  title={Finding Density Functionals with Machine Learning},
  number={25},
  volume={108},
  issn={0031-9007},
  journal={Physical Review Letters},
  author={Snyder, John C. and Rupp, Matthias and Hansen, Katja and Müller, Klaus-Robert and Burke, Kieron},
  note={Article Number: 253002}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52164">
    <dc:creator>Hansen, Katja</dc:creator>
    <dc:creator>Müller, Klaus-Robert</dc:creator>
    <dc:contributor>Snyder, John C.</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Müller, Klaus-Robert</dc:contributor>
    <dc:contributor>Burke, Kieron</dc:contributor>
    <dcterms:title>Finding Density Functionals with Machine Learning</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-17T14:29:21Z</dc:date>
    <dc:creator>Snyder, John C.</dc:creator>
    <dcterms:issued>2012-06-22</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-17T14:29:21Z</dcterms:available>
    <dc:creator>Rupp, Matthias</dc:creator>
    <dcterms:abstract xml:lang="eng">Machine learning is used to approximate density functionals. For the model problem of the kinetic energy of noninteracting fermions in 1D, mean absolute errors below 1  kcal/mol on test densities similar to the training set are reached with fewer than 100 training densities. A predictor identifies if a test density is within the interpolation region. Via principal component analysis, a projected functional derivative finds highly accurate self-consistent densities. The challenges for application of our method to real electronic structure problems are discussed.</dcterms:abstract>
    <dc:contributor>Hansen, Katja</dc:contributor>
    <dc:creator>Burke, Kieron</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Rupp, Matthias</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52164"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen