Publikation:

Comparative visual analysis of large customer feedback based on self-organizing sentiment maps

Lade...
Vorschaubild

Dateien

Janetzko_265304.pdf
Janetzko_265304.pdfGröße: 2.14 MBDownloads: 147

Datum

2013

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

The Third International Conference on Advances in Information Mining and Management : IMMM 2013 ; November 17 - 22, 2013, Lisbon, Portugal. 2013

Zusammenfassung

Textual customer feedback data, e.g., received by surveys or incoming customer email notifications, can be a rich source of information with many applications in Customer Relationship Management (CRM). Nevertheless, to date this valuable source of information is often neglected in practice, as service managers would have to read manually through potentially large amounts of feedback text documents to extract actionable information. As in many cases, a purely manual approach is not feasible, we propose an automatic visualization technique to enable the geospatial-aware visual comparison of customer feedback. Our approach is based on integrating geospatial significance calculations, textual sentiment analysis, and visual clustering and aggregation based on Self-Organzing Maps in an interactive analysis application. Showing significant location dependencies of key concepts and sentiments expressed by the customer feedback, our approach helps to deal with large unstructured customer feedback data. We apply our technique to real-world customer feedback data in a case-study, showing the capabilities of our method by highlighting interesting findings.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

IMMM, 17. Nov. 2013 - 22. Nov. 2013, Lisbon, Portugal
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690JANETZKO, Halldor, Dominik JÄCKLE, Tobias SCHRECK, 2013. Comparative visual analysis of large customer feedback based on self-organizing sentiment maps. IMMM. Lisbon, Portugal, 17. Nov. 2013 - 22. Nov. 2013. In: The Third International Conference on Advances in Information Mining and Management : IMMM 2013 ; November 17 - 22, 2013, Lisbon, Portugal. 2013
BibTex
@inproceedings{Janetzko2013Compa-26530,
  year={2013},
  title={Comparative visual analysis of large customer feedback based on self-organizing sentiment maps},
  booktitle={The Third International Conference on Advances in Information Mining and Management : IMMM 2013 ; November 17 - 22, 2013, Lisbon, Portugal},
  author={Janetzko, Halldor and Jäckle, Dominik and Schreck, Tobias}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/26530">
    <dcterms:issued>2013</dcterms:issued>
    <dc:creator>Janetzko, Halldor</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-26T10:14:57Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-26T10:14:57Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dc:language>eng</dc:language>
    <dc:creator>Jäckle, Dominik</dc:creator>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dc:contributor>Jäckle, Dominik</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26530/2/Janetzko_265304.pdf"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/26530"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:title>Comparative visual analysis of large customer feedback based on self-organizing sentiment maps</dcterms:title>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26530/2/Janetzko_265304.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">Textual customer feedback data, e.g., received by surveys or incoming customer email notifications, can be a rich source of information with many applications in Customer Relationship Management (CRM). Nevertheless, to date this valuable source of information is often neglected in practice, as service managers would have to read manually through potentially large amounts of feedback text documents to extract actionable information. As in many cases, a purely manual approach is not feasible, we propose an automatic visualization technique to enable the geospatial-aware visual comparison of customer feedback. Our approach is based on integrating geospatial significance calculations, textual sentiment analysis, and visual clustering and aggregation based on Self-Organzing Maps in an interactive analysis application. Showing significant location dependencies of key concepts and sentiments expressed by the customer feedback, our approach helps to deal with large unstructured customer feedback data. We apply our technique to real-world customer feedback data in a case-study, showing the capabilities of our method by highlighting interesting findings.</dcterms:abstract>
    <dcterms:bibliographicCitation>Vortrag gehalten bei: The Third International Conference on Advances in Information Mining and Management : IMMM 2013 ; November 17 - 22, 2013 , Lisbon, Portugal</dcterms:bibliographicCitation>
    <dc:contributor>Janetzko, Halldor</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen