Comparative visual analysis of large customer feedback based on self-organizing sentiment maps

Lade...
Vorschaubild
Dateien
Janetzko_265304.pdf
Janetzko_265304.pdfGröße: 2.14 MBDownloads: 141
Datum
2013
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
The Third International Conference on Advances in Information Mining and Management : IMMM 2013 ; November 17 - 22, 2013, Lisbon, Portugal. 2013
Zusammenfassung

Textual customer feedback data, e.g., received by surveys or incoming customer email notifications, can be a rich source of information with many applications in Customer Relationship Management (CRM). Nevertheless, to date this valuable source of information is often neglected in practice, as service managers would have to read manually through potentially large amounts of feedback text documents to extract actionable information. As in many cases, a purely manual approach is not feasible, we propose an automatic visualization technique to enable the geospatial-aware visual comparison of customer feedback. Our approach is based on integrating geospatial significance calculations, textual sentiment analysis, and visual clustering and aggregation based on Self-Organzing Maps in an interactive analysis application. Showing significant location dependencies of key concepts and sentiments expressed by the customer feedback, our approach helps to deal with large unstructured customer feedback data. We apply our technique to real-world customer feedback data in a case-study, showing the capabilities of our method by highlighting interesting findings.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
IMMM, 17. Nov. 2013 - 22. Nov. 2013, Lisbon, Portugal
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690JANETZKO, Halldor, Dominik JÄCKLE, Tobias SCHRECK, 2013. Comparative visual analysis of large customer feedback based on self-organizing sentiment maps. IMMM. Lisbon, Portugal, 17. Nov. 2013 - 22. Nov. 2013. In: The Third International Conference on Advances in Information Mining and Management : IMMM 2013 ; November 17 - 22, 2013, Lisbon, Portugal. 2013
BibTex
@inproceedings{Janetzko2013Compa-26530,
  year={2013},
  title={Comparative visual analysis of large customer feedback based on self-organizing sentiment maps},
  booktitle={The Third International Conference on Advances in Information Mining and Management : IMMM 2013 ; November 17 - 22, 2013, Lisbon, Portugal},
  author={Janetzko, Halldor and Jäckle, Dominik and Schreck, Tobias}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/26530">
    <dcterms:issued>2013</dcterms:issued>
    <dc:creator>Janetzko, Halldor</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-26T10:14:57Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-26T10:14:57Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dc:language>eng</dc:language>
    <dc:creator>Jäckle, Dominik</dc:creator>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dc:contributor>Jäckle, Dominik</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26530/2/Janetzko_265304.pdf"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/26530"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:title>Comparative visual analysis of large customer feedback based on self-organizing sentiment maps</dcterms:title>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26530/2/Janetzko_265304.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">Textual customer feedback data, e.g., received by surveys or incoming customer email notifications, can be a rich source of information with many applications in Customer Relationship Management (CRM). Nevertheless, to date this valuable source of information is often neglected in practice, as service managers would have to read manually through potentially large amounts of feedback text documents to extract actionable information. As in many cases, a purely manual approach is not feasible, we propose an automatic visualization technique to enable the geospatial-aware visual comparison of customer feedback. Our approach is based on integrating geospatial significance calculations, textual sentiment analysis, and visual clustering and aggregation based on Self-Organzing Maps in an interactive analysis application. Showing significant location dependencies of key concepts and sentiments expressed by the customer feedback, our approach helps to deal with large unstructured customer feedback data. We apply our technique to real-world customer feedback data in a case-study, showing the capabilities of our method by highlighting interesting findings.</dcterms:abstract>
    <dcterms:bibliographicCitation>Vortrag gehalten bei: The Third International Conference on Advances in Information Mining and Management : IMMM 2013 ; November 17 - 22, 2013 , Lisbon, Portugal</dcterms:bibliographicCitation>
    <dc:contributor>Janetzko, Halldor</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen