Operationally meaningful representations of physical systems in neural networks
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
To make progress in science, we often build abstract representations of physical systems that meaningfully encode information about the systems. Such representations ignore redundant features and treat parameters such as velocity and position separately because they can be useful for making statements about different experimental settings. Here, we capture this notion by formally defining the concept of operationally meaningful representations. We present an autoencoder architecture with attention mechanism that can generate such representations and demonstrate it on examples involving both classical and quantum physics. For instance, our architecture finds a compact representation of an arbitrary two-qubit system that separates local parameters from parameters describing quantum correlations.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
POULSEN NAUTRUP, Hendrik, Tony METGER, Raban ITEN, Sofiene JERBI, Lea M. TRENKWALDER, Henrik WILMING, Hans J. BRIEGEL, Renato RENNER, 2022. Operationally meaningful representations of physical systems in neural networks. In: Machine Learning: Science and Technology. IOP Publishing. 2022, 3(4), 045025. eISSN 2632-2153. Available under: doi: 10.1088/2632-2153/ac9ae8BibTex
@article{PoulsenNautrup2022Opera-59643, year={2022}, doi={10.1088/2632-2153/ac9ae8}, title={Operationally meaningful representations of physical systems in neural networks}, number={4}, volume={3}, journal={Machine Learning: Science and Technology}, author={Poulsen Nautrup, Hendrik and Metger, Tony and Iten, Raban and Jerbi, Sofiene and Trenkwalder, Lea M. and Wilming, Henrik and Briegel, Hans J. and Renner, Renato}, note={Article Number: 045025} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59643"> <dc:creator>Renner, Renato</dc:creator> <dc:language>eng</dc:language> <dc:contributor>Iten, Raban</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59643/1/Poulsen%20Nautrup_2-uzosr6ugoajk8.PDF"/> <dcterms:issued>2022</dcterms:issued> <dc:creator>Trenkwalder, Lea M.</dc:creator> <dc:creator>Jerbi, Sofiene</dc:creator> <dc:creator>Briegel, Hans J.</dc:creator> <dc:creator>Metger, Tony</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Poulsen Nautrup, Hendrik</dc:contributor> <dc:creator>Iten, Raban</dc:creator> <dc:creator>Wilming, Henrik</dc:creator> <dc:contributor>Renner, Renato</dc:contributor> <dc:contributor>Briegel, Hans J.</dc:contributor> <dc:contributor>Jerbi, Sofiene</dc:contributor> <dc:contributor>Wilming, Henrik</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-05T11:23:23Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/> <dc:contributor>Metger, Tony</dc:contributor> <dc:creator>Poulsen Nautrup, Hendrik</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-05T11:23:23Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59643"/> <dcterms:abstract xml:lang="eng">To make progress in science, we often build abstract representations of physical systems that meaningfully encode information about the systems. Such representations ignore redundant features and treat parameters such as velocity and position separately because they can be useful for making statements about different experimental settings. Here, we capture this notion by formally defining the concept of operationally meaningful representations. We present an autoencoder architecture with attention mechanism that can generate such representations and demonstrate it on examples involving both classical and quantum physics. For instance, our architecture finds a compact representation of an arbitrary two-qubit system that separates local parameters from parameters describing quantum correlations.</dcterms:abstract> <dcterms:title>Operationally meaningful representations of physical systems in neural networks</dcterms:title> <dc:rights>terms-of-use</dc:rights> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59643/1/Poulsen%20Nautrup_2-uzosr6ugoajk8.PDF"/> <dc:contributor>Trenkwalder, Lea M.</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> </rdf:Description> </rdf:RDF>