Operationally meaningful representations of physical systems in neural networks

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2022
Autor:innen
Poulsen Nautrup, Hendrik
Metger, Tony
Iten, Raban
Jerbi, Sofiene
Trenkwalder, Lea M.
Wilming, Henrik
Renner, Renato
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Gold
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Machine Learning: Science and Technology. IOP Publishing. 2022, 3(4), 045025. eISSN 2632-2153. Available under: doi: 10.1088/2632-2153/ac9ae8
Zusammenfassung

To make progress in science, we often build abstract representations of physical systems that meaningfully encode information about the systems. Such representations ignore redundant features and treat parameters such as velocity and position separately because they can be useful for making statements about different experimental settings. Here, we capture this notion by formally defining the concept of operationally meaningful representations. We present an autoencoder architecture with attention mechanism that can generate such representations and demonstrate it on examples involving both classical and quantum physics. For instance, our architecture finds a compact representation of an arbitrary two-qubit system that separates local parameters from parameters describing quantum correlations.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
100 Philosophie
Schlagwörter
representation learning, neural networks, reinforcement learning, Bloch vector, quantum physics
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690POULSEN NAUTRUP, Hendrik, Tony METGER, Raban ITEN, Sofiene JERBI, Lea M. TRENKWALDER, Henrik WILMING, Hans J. BRIEGEL, Renato RENNER, 2022. Operationally meaningful representations of physical systems in neural networks. In: Machine Learning: Science and Technology. IOP Publishing. 2022, 3(4), 045025. eISSN 2632-2153. Available under: doi: 10.1088/2632-2153/ac9ae8
BibTex
@article{PoulsenNautrup2022Opera-59643,
  year={2022},
  doi={10.1088/2632-2153/ac9ae8},
  title={Operationally meaningful representations of physical systems in neural networks},
  number={4},
  volume={3},
  journal={Machine Learning: Science and Technology},
  author={Poulsen Nautrup, Hendrik and Metger, Tony and Iten, Raban and Jerbi, Sofiene and Trenkwalder, Lea M. and Wilming, Henrik and Briegel, Hans J. and Renner, Renato},
  note={Article Number: 045025}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59643">
    <dc:creator>Renner, Renato</dc:creator>
    <dc:language>eng</dc:language>
    <dc:contributor>Iten, Raban</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59643/1/Poulsen%20Nautrup_2-uzosr6ugoajk8.PDF"/>
    <dcterms:issued>2022</dcterms:issued>
    <dc:creator>Trenkwalder, Lea M.</dc:creator>
    <dc:creator>Jerbi, Sofiene</dc:creator>
    <dc:creator>Briegel, Hans J.</dc:creator>
    <dc:creator>Metger, Tony</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Poulsen Nautrup, Hendrik</dc:contributor>
    <dc:creator>Iten, Raban</dc:creator>
    <dc:creator>Wilming, Henrik</dc:creator>
    <dc:contributor>Renner, Renato</dc:contributor>
    <dc:contributor>Briegel, Hans J.</dc:contributor>
    <dc:contributor>Jerbi, Sofiene</dc:contributor>
    <dc:contributor>Wilming, Henrik</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-05T11:23:23Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <dc:contributor>Metger, Tony</dc:contributor>
    <dc:creator>Poulsen Nautrup, Hendrik</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-05T11:23:23Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59643"/>
    <dcterms:abstract xml:lang="eng">To make progress in science, we often build abstract representations of physical systems that meaningfully encode information about the systems. Such representations ignore redundant features and treat parameters such as velocity and position separately because they can be useful for making statements about different experimental settings. Here, we capture this notion by formally defining the concept of operationally meaningful representations. We present an autoencoder architecture with attention mechanism that can generate such representations and demonstrate it on examples involving both classical and quantum physics. For instance, our architecture finds a compact representation of an arbitrary two-qubit system that separates local parameters from parameters describing quantum correlations.</dcterms:abstract>
    <dcterms:title>Operationally meaningful representations of physical systems in neural networks</dcterms:title>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59643/1/Poulsen%20Nautrup_2-uzosr6ugoajk8.PDF"/>
    <dc:contributor>Trenkwalder, Lea M.</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja
Diese Publikation teilen