Publikation:

Operationally meaningful representations of physical systems in neural networks

Lade...
Vorschaubild

Dateien

Poulsen Nautrup_2-uzosr6ugoajk8.PDF
Poulsen Nautrup_2-uzosr6ugoajk8.PDFGröße: 2.48 MBDownloads: 56

Datum

2022

Autor:innen

Poulsen Nautrup, Hendrik
Metger, Tony
Iten, Raban
Jerbi, Sofiene
Trenkwalder, Lea M.
Wilming, Henrik
Renner, Renato

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Machine Learning: Science and Technology. IOP Publishing. 2022, 3(4), 045025. eISSN 2632-2153. Available under: doi: 10.1088/2632-2153/ac9ae8

Zusammenfassung

To make progress in science, we often build abstract representations of physical systems that meaningfully encode information about the systems. Such representations ignore redundant features and treat parameters such as velocity and position separately because they can be useful for making statements about different experimental settings. Here, we capture this notion by formally defining the concept of operationally meaningful representations. We present an autoencoder architecture with attention mechanism that can generate such representations and demonstrate it on examples involving both classical and quantum physics. For instance, our architecture finds a compact representation of an arbitrary two-qubit system that separates local parameters from parameters describing quantum correlations.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
100 Philosophie

Schlagwörter

representation learning, neural networks, reinforcement learning, Bloch vector, quantum physics

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690POULSEN NAUTRUP, Hendrik, Tony METGER, Raban ITEN, Sofiene JERBI, Lea M. TRENKWALDER, Henrik WILMING, Hans J. BRIEGEL, Renato RENNER, 2022. Operationally meaningful representations of physical systems in neural networks. In: Machine Learning: Science and Technology. IOP Publishing. 2022, 3(4), 045025. eISSN 2632-2153. Available under: doi: 10.1088/2632-2153/ac9ae8
BibTex
@article{PoulsenNautrup2022Opera-59643,
  year={2022},
  doi={10.1088/2632-2153/ac9ae8},
  title={Operationally meaningful representations of physical systems in neural networks},
  number={4},
  volume={3},
  journal={Machine Learning: Science and Technology},
  author={Poulsen Nautrup, Hendrik and Metger, Tony and Iten, Raban and Jerbi, Sofiene and Trenkwalder, Lea M. and Wilming, Henrik and Briegel, Hans J. and Renner, Renato},
  note={Article Number: 045025}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59643">
    <dc:creator>Renner, Renato</dc:creator>
    <dc:language>eng</dc:language>
    <dc:contributor>Iten, Raban</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59643/1/Poulsen%20Nautrup_2-uzosr6ugoajk8.PDF"/>
    <dcterms:issued>2022</dcterms:issued>
    <dc:creator>Trenkwalder, Lea M.</dc:creator>
    <dc:creator>Jerbi, Sofiene</dc:creator>
    <dc:creator>Briegel, Hans J.</dc:creator>
    <dc:creator>Metger, Tony</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Poulsen Nautrup, Hendrik</dc:contributor>
    <dc:creator>Iten, Raban</dc:creator>
    <dc:creator>Wilming, Henrik</dc:creator>
    <dc:contributor>Renner, Renato</dc:contributor>
    <dc:contributor>Briegel, Hans J.</dc:contributor>
    <dc:contributor>Jerbi, Sofiene</dc:contributor>
    <dc:contributor>Wilming, Henrik</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-05T11:23:23Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <dc:contributor>Metger, Tony</dc:contributor>
    <dc:creator>Poulsen Nautrup, Hendrik</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-05T11:23:23Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59643"/>
    <dcterms:abstract xml:lang="eng">To make progress in science, we often build abstract representations of physical systems that meaningfully encode information about the systems. Such representations ignore redundant features and treat parameters such as velocity and position separately because they can be useful for making statements about different experimental settings. Here, we capture this notion by formally defining the concept of operationally meaningful representations. We present an autoencoder architecture with attention mechanism that can generate such representations and demonstrate it on examples involving both classical and quantum physics. For instance, our architecture finds a compact representation of an arbitrary two-qubit system that separates local parameters from parameters describing quantum correlations.</dcterms:abstract>
    <dcterms:title>Operationally meaningful representations of physical systems in neural networks</dcterms:title>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59643/1/Poulsen%20Nautrup_2-uzosr6ugoajk8.PDF"/>
    <dc:contributor>Trenkwalder, Lea M.</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja
Diese Publikation teilen