BigGIS : a continuous refinement approach to master heterogeneity and uncertainty in spatio-temporal big data (vision paper)

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2016
Autor:innen
Wiener, Patrick
Bruns, Julian
Frank, Matthias
Simko, Viliam
Zander, Stefan
Nimis, Jens
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
ALI, Mohamed, ed., Shawn NEWSAM, ed.. GIS '16 : Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems - GIS '16. New York: ACM Press, 2016, 8. ISBN 978-1-4503-4589-7. Available under: doi: 10.1145/2996913.2996931
Zusammenfassung

Geographic information systems (GIS) are important for decision support based on spatial data. Due to technical and economical progress an ever increasing number of data sources are available leading to a rapidly growing fast and unreliable amount of data that can be beneficial (1) in the approximation of multivariate and causal predictions of future values as well as (2) in robust and proactive decision-making processes. However, today's GIS are not designed for such big data demands and require new methodologies to effectively model uncertainty and generate meaningful knowledge. As a consequence, we introduce BigGIS, a predictive and prescriptive spatio-temporal analytics platform, that symbiotically combines big data analytics, semantic web technologies and visual analytics methodologies. We present a novel continuous refinement model and show future challenges as an intermediate result of a collaborative research project into big data methodologies for spatio-temporal analysis and design for a big data enabled GIS.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Knowledge Generation, Big Data Analytics, Data Architecture
Konferenz
24th ACM SIGSPATIAL International Conference, 31. Okt. 2016 - 3. Nov. 2016, Burlingame, California
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690WIENER, Patrick, Manuel STEIN, Daniel SEEBACHER, Julian BRUNS, Matthias FRANK, Viliam SIMKO, Stefan ZANDER, Jens NIMIS, 2016. BigGIS : a continuous refinement approach to master heterogeneity and uncertainty in spatio-temporal big data (vision paper). 24th ACM SIGSPATIAL International Conference. Burlingame, California, 31. Okt. 2016 - 3. Nov. 2016. In: ALI, Mohamed, ed., Shawn NEWSAM, ed.. GIS '16 : Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems - GIS '16. New York: ACM Press, 2016, 8. ISBN 978-1-4503-4589-7. Available under: doi: 10.1145/2996913.2996931
BibTex
@inproceedings{Wiener2016BigGI-36921,
  year={2016},
  doi={10.1145/2996913.2996931},
  title={BigGIS : a continuous refinement approach to master heterogeneity and uncertainty in spatio-temporal big data (vision paper)},
  isbn={978-1-4503-4589-7},
  publisher={ACM Press},
  address={New York},
  booktitle={GIS '16 : Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems  - GIS '16},
  editor={Ali, Mohamed and Newsam, Shawn},
  author={Wiener, Patrick and Stein, Manuel and Seebacher, Daniel and Bruns, Julian and Frank, Matthias and Simko, Viliam and Zander, Stefan and Nimis, Jens},
  note={Article Number: 8}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36921">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/36921"/>
    <dcterms:issued>2016</dcterms:issued>
    <dc:contributor>Simko, Viliam</dc:contributor>
    <dcterms:title>BigGIS : a continuous refinement approach to master heterogeneity and uncertainty in spatio-temporal big data (vision paper)</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Stein, Manuel</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-01-24T11:43:43Z</dc:date>
    <dc:creator>Frank, Matthias</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-01-24T11:43:43Z</dcterms:available>
    <dc:contributor>Seebacher, Daniel</dc:contributor>
    <dc:contributor>Frank, Matthias</dc:contributor>
    <dc:creator>Simko, Viliam</dc:creator>
    <dc:contributor>Zander, Stefan</dc:contributor>
    <dc:creator>Bruns, Julian</dc:creator>
    <dc:creator>Seebacher, Daniel</dc:creator>
    <dc:creator>Zander, Stefan</dc:creator>
    <dc:contributor>Bruns, Julian</dc:contributor>
    <dc:creator>Wiener, Patrick</dc:creator>
    <dc:creator>Nimis, Jens</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract xml:lang="eng">Geographic information systems (GIS) are important for decision support based on spatial data. Due to technical and economical progress an ever increasing number of data sources are available leading to a rapidly growing fast and unreliable amount of data that can be beneficial (1) in the approximation of multivariate and causal predictions of future values as well as (2) in robust and proactive decision-making processes. However, today's GIS are not designed for such big data demands and require new methodologies to effectively model uncertainty and generate meaningful knowledge. As a consequence, we introduce BigGIS, a predictive and prescriptive spatio-temporal analytics platform, that symbiotically combines big data analytics, semantic web technologies and visual analytics methodologies. We present a novel continuous refinement model and show future challenges as an intermediate result of a collaborative research project into big data methodologies for spatio-temporal analysis and design for a big data enabled GIS.</dcterms:abstract>
    <dc:contributor>Nimis, Jens</dc:contributor>
    <dc:contributor>Wiener, Patrick</dc:contributor>
    <dc:creator>Stein, Manuel</dc:creator>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen