BigGIS : a continuous refinement approach to master heterogeneity and uncertainty in spatio-temporal big data (vision paper)
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Geographic information systems (GIS) are important for decision support based on spatial data. Due to technical and economical progress an ever increasing number of data sources are available leading to a rapidly growing fast and unreliable amount of data that can be beneficial (1) in the approximation of multivariate and causal predictions of future values as well as (2) in robust and proactive decision-making processes. However, today's GIS are not designed for such big data demands and require new methodologies to effectively model uncertainty and generate meaningful knowledge. As a consequence, we introduce BigGIS, a predictive and prescriptive spatio-temporal analytics platform, that symbiotically combines big data analytics, semantic web technologies and visual analytics methodologies. We present a novel continuous refinement model and show future challenges as an intermediate result of a collaborative research project into big data methodologies for spatio-temporal analysis and design for a big data enabled GIS.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WIENER, Patrick, Manuel STEIN, Daniel SEEBACHER, Julian BRUNS, Matthias FRANK, Viliam SIMKO, Stefan ZANDER, Jens NIMIS, 2016. BigGIS : a continuous refinement approach to master heterogeneity and uncertainty in spatio-temporal big data (vision paper). 24th ACM SIGSPATIAL International Conference. Burlingame, California, 31. Okt. 2016 - 3. Nov. 2016. In: ALI, Mohamed, ed., Shawn NEWSAM, ed.. GIS '16 : Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems - GIS '16. New York: ACM Press, 2016, 8. ISBN 978-1-4503-4589-7. Available under: doi: 10.1145/2996913.2996931BibTex
@inproceedings{Wiener2016BigGI-36921, year={2016}, doi={10.1145/2996913.2996931}, title={BigGIS : a continuous refinement approach to master heterogeneity and uncertainty in spatio-temporal big data (vision paper)}, isbn={978-1-4503-4589-7}, publisher={ACM Press}, address={New York}, booktitle={GIS '16 : Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems - GIS '16}, editor={Ali, Mohamed and Newsam, Shawn}, author={Wiener, Patrick and Stein, Manuel and Seebacher, Daniel and Bruns, Julian and Frank, Matthias and Simko, Viliam and Zander, Stefan and Nimis, Jens}, note={Article Number: 8} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36921"> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/36921"/> <dcterms:issued>2016</dcterms:issued> <dc:contributor>Simko, Viliam</dc:contributor> <dcterms:title>BigGIS : a continuous refinement approach to master heterogeneity and uncertainty in spatio-temporal big data (vision paper)</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Stein, Manuel</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-01-24T11:43:43Z</dc:date> <dc:creator>Frank, Matthias</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-01-24T11:43:43Z</dcterms:available> <dc:contributor>Seebacher, Daniel</dc:contributor> <dc:contributor>Frank, Matthias</dc:contributor> <dc:creator>Simko, Viliam</dc:creator> <dc:contributor>Zander, Stefan</dc:contributor> <dc:creator>Bruns, Julian</dc:creator> <dc:creator>Seebacher, Daniel</dc:creator> <dc:creator>Zander, Stefan</dc:creator> <dc:contributor>Bruns, Julian</dc:contributor> <dc:creator>Wiener, Patrick</dc:creator> <dc:creator>Nimis, Jens</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">Geographic information systems (GIS) are important for decision support based on spatial data. Due to technical and economical progress an ever increasing number of data sources are available leading to a rapidly growing fast and unreliable amount of data that can be beneficial (1) in the approximation of multivariate and causal predictions of future values as well as (2) in robust and proactive decision-making processes. However, today's GIS are not designed for such big data demands and require new methodologies to effectively model uncertainty and generate meaningful knowledge. As a consequence, we introduce BigGIS, a predictive and prescriptive spatio-temporal analytics platform, that symbiotically combines big data analytics, semantic web technologies and visual analytics methodologies. We present a novel continuous refinement model and show future challenges as an intermediate result of a collaborative research project into big data methodologies for spatio-temporal analysis and design for a big data enabled GIS.</dcterms:abstract> <dc:contributor>Nimis, Jens</dc:contributor> <dc:contributor>Wiener, Patrick</dc:contributor> <dc:creator>Stein, Manuel</dc:creator> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>