Publikation:

BigGIS : a continuous refinement approach to master heterogeneity and uncertainty in spatio-temporal big data (vision paper)

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2016

Autor:innen

Wiener, Patrick
Bruns, Julian
Frank, Matthias
Simko, Viliam
Zander, Stefan
Nimis, Jens

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

ALI, Mohamed, ed., Shawn NEWSAM, ed.. GIS '16 : Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems - GIS '16. New York: ACM Press, 2016, 8. ISBN 978-1-4503-4589-7. Available under: doi: 10.1145/2996913.2996931

Zusammenfassung

Geographic information systems (GIS) are important for decision support based on spatial data. Due to technical and economical progress an ever increasing number of data sources are available leading to a rapidly growing fast and unreliable amount of data that can be beneficial (1) in the approximation of multivariate and causal predictions of future values as well as (2) in robust and proactive decision-making processes. However, today's GIS are not designed for such big data demands and require new methodologies to effectively model uncertainty and generate meaningful knowledge. As a consequence, we introduce BigGIS, a predictive and prescriptive spatio-temporal analytics platform, that symbiotically combines big data analytics, semantic web technologies and visual analytics methodologies. We present a novel continuous refinement model and show future challenges as an intermediate result of a collaborative research project into big data methodologies for spatio-temporal analysis and design for a big data enabled GIS.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Knowledge Generation, Big Data Analytics, Data Architecture

Konferenz

24th ACM SIGSPATIAL International Conference, 31. Okt. 2016 - 3. Nov. 2016, Burlingame, California
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690WIENER, Patrick, Manuel STEIN, Daniel SEEBACHER, Julian BRUNS, Matthias FRANK, Viliam SIMKO, Stefan ZANDER, Jens NIMIS, 2016. BigGIS : a continuous refinement approach to master heterogeneity and uncertainty in spatio-temporal big data (vision paper). 24th ACM SIGSPATIAL International Conference. Burlingame, California, 31. Okt. 2016 - 3. Nov. 2016. In: ALI, Mohamed, ed., Shawn NEWSAM, ed.. GIS '16 : Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems - GIS '16. New York: ACM Press, 2016, 8. ISBN 978-1-4503-4589-7. Available under: doi: 10.1145/2996913.2996931
BibTex
@inproceedings{Wiener2016BigGI-36921,
  year={2016},
  doi={10.1145/2996913.2996931},
  title={BigGIS : a continuous refinement approach to master heterogeneity and uncertainty in spatio-temporal big data (vision paper)},
  isbn={978-1-4503-4589-7},
  publisher={ACM Press},
  address={New York},
  booktitle={GIS '16 : Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems  - GIS '16},
  editor={Ali, Mohamed and Newsam, Shawn},
  author={Wiener, Patrick and Stein, Manuel and Seebacher, Daniel and Bruns, Julian and Frank, Matthias and Simko, Viliam and Zander, Stefan and Nimis, Jens},
  note={Article Number: 8}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36921">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/36921"/>
    <dcterms:issued>2016</dcterms:issued>
    <dc:contributor>Simko, Viliam</dc:contributor>
    <dcterms:title>BigGIS : a continuous refinement approach to master heterogeneity and uncertainty in spatio-temporal big data (vision paper)</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Stein, Manuel</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-01-24T11:43:43Z</dc:date>
    <dc:creator>Frank, Matthias</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-01-24T11:43:43Z</dcterms:available>
    <dc:contributor>Seebacher, Daniel</dc:contributor>
    <dc:contributor>Frank, Matthias</dc:contributor>
    <dc:creator>Simko, Viliam</dc:creator>
    <dc:contributor>Zander, Stefan</dc:contributor>
    <dc:creator>Bruns, Julian</dc:creator>
    <dc:creator>Seebacher, Daniel</dc:creator>
    <dc:creator>Zander, Stefan</dc:creator>
    <dc:contributor>Bruns, Julian</dc:contributor>
    <dc:creator>Wiener, Patrick</dc:creator>
    <dc:creator>Nimis, Jens</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract xml:lang="eng">Geographic information systems (GIS) are important for decision support based on spatial data. Due to technical and economical progress an ever increasing number of data sources are available leading to a rapidly growing fast and unreliable amount of data that can be beneficial (1) in the approximation of multivariate and causal predictions of future values as well as (2) in robust and proactive decision-making processes. However, today's GIS are not designed for such big data demands and require new methodologies to effectively model uncertainty and generate meaningful knowledge. As a consequence, we introduce BigGIS, a predictive and prescriptive spatio-temporal analytics platform, that symbiotically combines big data analytics, semantic web technologies and visual analytics methodologies. We present a novel continuous refinement model and show future challenges as an intermediate result of a collaborative research project into big data methodologies for spatio-temporal analysis and design for a big data enabled GIS.</dcterms:abstract>
    <dc:contributor>Nimis, Jens</dc:contributor>
    <dc:contributor>Wiener, Patrick</dc:contributor>
    <dc:creator>Stein, Manuel</dc:creator>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen