Towards visual debugging for multi-target time series classification
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Sammlungen
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Multi-target classification of multivariate time series data poses a challenge in many real-world applications (e.g., predictive maintenance). Machine learning methods, such as random forests and neural networks, support training these classifiers. However, the debugging and analysis of possible misclassifications remain challenging due to the often complex relations between targets, classes, and the multivariate time series data. We propose a model-agnostic visual debugging workflow for multi-target time series classification that enables the examination of relations between targets, partially correct predictions, potential confusions, and the classified time series data. The workflow, as well as the prototype, aims to foster an in-depth analysis of multi-target classification results to identify potential causes of mispredictions visually. We demonstrate the usefulness of the workflow in the field of predictive maintenance in a usage scenario to show how users can iteratively explore and identify critical classes, as well as, relationships between targets.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SCHLEGEL, Udo, Eren CAKMAK, Hiba ARNOUT, Mennatallah EL-ASSADY, Daniela OELKE, Daniel A. KEIM, 2020. Towards visual debugging for multi-target time series classification. IUI '20: 25th International Conference on Intelligent User Interfaces. Cagliari, Italy, 17. März 2020 - 20. März 2020. In: PATERNÒ, Fabio, ed., Nuria OLIVER, ed.. IUI '20 : Proceedings of the 25th International Conference on Intelligent User Interfaces. New York, NY: ACM, 2020, pp. 202-206. ISBN 978-1-4503-7118-6. Available under: doi: 10.1145/3377325.3377528BibTex
@inproceedings{Schlegel2020Towar-53085, year={2020}, doi={10.1145/3377325.3377528}, title={Towards visual debugging for multi-target time series classification}, isbn={978-1-4503-7118-6}, publisher={ACM}, address={New York, NY}, booktitle={IUI '20 : Proceedings of the 25th International Conference on Intelligent User Interfaces}, pages={202--206}, editor={Paternò, Fabio and Oliver, Nuria}, author={Schlegel, Udo and Cakmak, Eren and Arnout, Hiba and El-Assady, Mennatallah and Oelke, Daniela and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53085"> <dc:contributor>Oelke, Daniela</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53085/1/Schlegel_2-111pfyzk81o0c5.pdf"/> <dcterms:title>Towards visual debugging for multi-target time series classification</dcterms:title> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:creator>El-Assady, Mennatallah</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53085"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-05T10:24:21Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>El-Assady, Mennatallah</dc:contributor> <dcterms:abstract xml:lang="eng">Multi-target classification of multivariate time series data poses a challenge in many real-world applications (e.g., predictive maintenance). Machine learning methods, such as random forests and neural networks, support training these classifiers. However, the debugging and analysis of possible misclassifications remain challenging due to the often complex relations between targets, classes, and the multivariate time series data. We propose a model-agnostic visual debugging workflow for multi-target time series classification that enables the examination of relations between targets, partially correct predictions, potential confusions, and the classified time series data. The workflow, as well as the prototype, aims to foster an in-depth analysis of multi-target classification results to identify potential causes of mispredictions visually. We demonstrate the usefulness of the workflow in the field of predictive maintenance in a usage scenario to show how users can iteratively explore and identify critical classes, as well as, relationships between targets.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Arnout, Hiba</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Cakmak, Eren</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> <dc:creator>Schlegel, Udo</dc:creator> <dc:contributor>Schlegel, Udo</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53085/1/Schlegel_2-111pfyzk81o0c5.pdf"/> <dcterms:issued>2020</dcterms:issued> <dc:creator>Oelke, Daniela</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-05T10:24:21Z</dc:date> <dc:creator>Arnout, Hiba</dc:creator> <dc:creator>Cakmak, Eren</dc:creator> </rdf:Description> </rdf:RDF>