Inhomogeneous symbols, the Newton polygon, and maximal Lp-regularity

dc.contributor.authorDenk, Robertdeu
dc.contributor.authorSaal, Jürgendeu
dc.contributor.authorSeiler, Jörgdeu
dc.date.accessioned2011-03-22T17:44:55Zdeu
dc.date.available2011-03-22T17:44:55Zdeu
dc.date.issued2008deu
dc.description.abstractWe prove a maximal regularity result for operators corresponding to rotation invariant (in space) symbols which are inhomogeneous in space and time. Symbols of this type frequently arise in the treatment of half-space models for (free) boundary value problems. The result is obtained by extending the Newton polygon approach to variables living in complex sectors and combining it with abstract results on functional calculus and R-bounded operator families. As an application we derive maximal regularity for the linearized Stefan problem with Gibbs-Thomson correction.eng
dc.format.mimetypeapplication/pdfdeu
dc.identifier.ppn278000908deu
dc.identifier.urihttp://kops.uni-konstanz.de/handle/123456789/524
dc.language.isoengdeu
dc.legacy.dateIssued2008deu
dc.relation.ispartofseriesKonstanzer Schriften in Mathematik und Informatikdeu
dc.rightsterms-of-usedeu
dc.rights.urihttps://rightsstatements.org/page/InC/1.0/deu
dc.subjectInhomogene Symboledeu
dc.subjectNewton Polygondeu
dc.subjectMaximale Regularitätdeu
dc.subjectInhomogeneous Symbolsdeu
dc.subjectNewton Polygondeu
dc.subjectMaximal regularitydeu
dc.subject.ddc510deu
dc.subject.gndSystem von partiellen Differentialgleichungendeu
dc.subject.msc42B15deu
dc.subject.msc35M10deu
dc.titleInhomogeneous symbols, the Newton polygon, and maximal Lp-regularityeng
dc.typeWORKINGPAPERdeu
dspace.entity.typePublication
kops.bibliographicInfo.seriesNumber244deu
kops.description.openAccessopenaccessgreen
kops.flag.knbibliographytrue
kops.identifier.nbnurn:nbn:de:bsz:352-opus-50540deu
kops.opus.id5054deu
temp.submission.doi
temp.submission.source
Dateien
Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
research_paper_244.pdf
Größe:
474.98 KB
Format:
Adobe Portable Document Format
Beschreibung:
research_paper_244.pdf
research_paper_244.pdfGröße: 474.98 KBDownloads: 309

Versionsgeschichte

Gerade angezeigt 1 - 2 von 2
VersionDatumZusammenfassung
2022-09-15 12:21:57
1*
2011-03-22 17:44:55
* Ausgewählte Version