Inhomogeneous symbols, the Newton polygon, and maximal Lp-regularity

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2008
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Russian Journal of Mathematical Physics. Springer. 2008, 15(2), pp. 171-191. ISSN 1061-9208. eISSN 1555-6638. Available under: doi: 10.1134/S1061920808020040
Zusammenfassung

We prove a maximal regularity result for operators corresponding to rotation invariant symbols (in space) which are inhomogeneous in space and time. Symbols of this type frequently arise in the treatment of half-space models for (free) boundary-value problems. The result is obtained by extending the Newton polygon approach to variables living in complex sectors and combining it with abstract results on the H∞-calculus and R-bounded operator families. As an application, we derive maximal regularity for the linearized Stefan problem with Gibbs-Thomson correction.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690DENK, Robert, Jürgen SAAL, Jörg SEILER, 2008. Inhomogeneous symbols, the Newton polygon, and maximal Lp-regularity. In: Russian Journal of Mathematical Physics. Springer. 2008, 15(2), pp. 171-191. ISSN 1061-9208. eISSN 1555-6638. Available under: doi: 10.1134/S1061920808020040
BibTex
@article{Denk2008Inhom-524.2,
  year={2008},
  doi={10.1134/S1061920808020040},
  title={Inhomogeneous symbols, the Newton polygon, and maximal L<sup>p</sup>-regularity},
  number={2},
  volume={15},
  issn={1061-9208},
  journal={Russian Journal of Mathematical Physics},
  pages={171--191},
  author={Denk, Robert and Saal, Jürgen and Seiler, Jörg}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/524.2">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-15T12:24:58Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/524.2"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Saal, Jürgen</dc:creator>
    <dc:contributor>Denk, Robert</dc:contributor>
    <dc:contributor>Saal, Jürgen</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">We prove a maximal regularity result for operators corresponding to rotation invariant symbols (in space) which are inhomogeneous in space and time. Symbols of this type frequently arise in the treatment of half-space models for (free) boundary-value problems. The result is obtained by extending the Newton polygon approach to variables living in complex sectors and combining it with abstract results on the H∞-calculus and R-bounded operator families. As an application, we derive maximal regularity for the linearized Stefan problem with Gibbs-Thomson correction.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Seiler, Jörg</dc:contributor>
    <dc:creator>Seiler, Jörg</dc:creator>
    <dcterms:title>Inhomogeneous symbols, the Newton polygon, and maximal L&lt;sup&gt;p&lt;/sup&gt;-regularity</dcterms:title>
    <dc:creator>Denk, Robert</dc:creator>
    <dcterms:issued>2008</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-15T12:24:58Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen

Versionsgeschichte

Gerade angezeigt 1 - 2 von 2
VersionDatumZusammenfassung
2*
2022-09-15 12:21:57
2011-03-22 17:44:55
* Ausgewählte Version