Generative Data Models for Validation and Evaluation of Visualization Techniques
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We argue that there is a need for substantially more research on the use of generative data models in the validation and evaluation of visualization techniques. For example, user studies will require the display of representative and uncon-founded visual stimuli, while algorithms will need functional coverage and assessable benchmarks. However, data is often collected in a semi-automatic fashion or entirely hand-picked, which obscures the view of generality, impairs availability, and potentially violates privacy. There are some sub-domains of visualization that use synthetic data in the sense of generative data models, whereas others work with real-world-based data sets and simulations. Depending on the visualization domain, many generative data models are "side projects" as part of an ad-hoc validation of a techniques paper and thus neither reusable nor general-purpose. We review existing work on popular data collections and generative data models in visualization to discuss the opportunities and consequences for technique validation, evaluation, and experiment design. We distill handling and future directions, and discuss how we can engineer generative data models and how visualization research could benefit from more and better use of generative data models.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SCHULZ, Christoph, Arlind NOCAJ, Mennatallah EL-ASSADY, Michael BLUMENSCHEIN, Christin SCHÄTZLE, Miriam BUTT, Daniel A. KEIM, Ulrik BRANDES, Daniel WEISKOPF, 2016. Generative Data Models for Validation and Evaluation of Visualization Techniques. BELIV Workshop 2016. Baltimore, MD, USA, 24. Okt. 2016 - 24. Okt. 2016. In: BELIV '16 : Proceedings of the Sixth Workshop on Beyond Time and Errors on Novel Evaluation Methods for Visualization. New York: ACM Press, 2016, pp. 112-124. ISBN 978-1-4503-4818-8. Available under: doi: 10.1145/2993901.2993907BibTex
@inproceedings{Schulz2016Gener-37469, year={2016}, doi={10.1145/2993901.2993907}, title={Generative Data Models for Validation and Evaluation of Visualization Techniques}, isbn={978-1-4503-4818-8}, publisher={ACM Press}, address={New York}, booktitle={BELIV '16 : Proceedings of the Sixth Workshop on Beyond Time and Errors on Novel Evaluation Methods for Visualization}, pages={112--124}, author={Schulz, Christoph and Nocaj, Arlind and El-Assady, Mennatallah and Blumenschein, Michael and Schätzle, Christin and Butt, Miriam and Keim, Daniel A. and Brandes, Ulrik and Weiskopf, Daniel} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/37469"> <dc:creator>Weiskopf, Daniel</dc:creator> <dc:contributor>Schulz, Christoph</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-16T07:54:41Z</dcterms:available> <dc:creator>Brandes, Ulrik</dc:creator> <dc:rights>terms-of-use</dc:rights> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/37469"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/> <dcterms:title>Generative Data Models for Validation and Evaluation of Visualization Techniques</dcterms:title> <dcterms:abstract xml:lang="eng">We argue that there is a need for substantially more research on the use of generative data models in the validation and evaluation of visualization techniques. For example, user studies will require the display of representative and uncon-founded visual stimuli, while algorithms will need functional coverage and assessable benchmarks. However, data is often collected in a semi-automatic fashion or entirely hand-picked, which obscures the view of generality, impairs availability, and potentially violates privacy. There are some sub-domains of visualization that use synthetic data in the sense of generative data models, whereas others work with real-world-based data sets and simulations. Depending on the visualization domain, many generative data models are "side projects" as part of an ad-hoc validation of a techniques paper and thus neither reusable nor general-purpose. We review existing work on popular data collections and generative data models in visualization to discuss the opportunities and consequences for technique validation, evaluation, and experiment design. We distill handling and future directions, and discuss how we can engineer generative data models and how visualization research could benefit from more and better use of generative data models.</dcterms:abstract> <dc:contributor>Schätzle, Christin</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/37469/1/Schulz_0-370172.pdf"/> <dc:creator>Butt, Miriam</dc:creator> <dc:contributor>Weiskopf, Daniel</dc:contributor> <dc:contributor>Brandes, Ulrik</dc:contributor> <dc:contributor>El-Assady, Mennatallah</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-16T07:54:41Z</dc:date> <dc:creator>Nocaj, Arlind</dc:creator> <dc:contributor>Butt, Miriam</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Schulz, Christoph</dc:creator> <dc:creator>Schätzle, Christin</dc:creator> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:issued>2016</dcterms:issued> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/37469/1/Schulz_0-370172.pdf"/> <dc:creator>El-Assady, Mennatallah</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Blumenschein, Michael</dc:creator> <dc:creator>Keim, Daniel A.</dc:creator> <dc:contributor>Nocaj, Arlind</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <dc:contributor>Blumenschein, Michael</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/> </rdf:Description> </rdf:RDF>