Publikation:

Generative Data Models for Validation and Evaluation of Visualization Techniques

Lade...
Vorschaubild

Dateien

Schulz_0-370172.pdf
Schulz_0-370172.pdfGröße: 184.43 KBDownloads: 1022

Datum

2016

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

BELIV '16 : Proceedings of the Sixth Workshop on Beyond Time and Errors on Novel Evaluation Methods for Visualization. New York: ACM Press, 2016, pp. 112-124. ISBN 978-1-4503-4818-8. Available under: doi: 10.1145/2993901.2993907

Zusammenfassung

We argue that there is a need for substantially more research on the use of generative data models in the validation and evaluation of visualization techniques. For example, user studies will require the display of representative and uncon-founded visual stimuli, while algorithms will need functional coverage and assessable benchmarks. However, data is often collected in a semi-automatic fashion or entirely hand-picked, which obscures the view of generality, impairs availability, and potentially violates privacy. There are some sub-domains of visualization that use synthetic data in the sense of generative data models, whereas others work with real-world-based data sets and simulations. Depending on the visualization domain, many generative data models are "side projects" as part of an ad-hoc validation of a techniques paper and thus neither reusable nor general-purpose. We review existing work on popular data collections and generative data models in visualization to discuss the opportunities and consequences for technique validation, evaluation, and experiment design. We distill handling and future directions, and discuss how we can engineer generative data models and how visualization research could benefit from more and better use of generative data models.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

BELIV Workshop 2016, 24. Okt. 2016 - 24. Okt. 2016, Baltimore, MD, USA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SCHULZ, Christoph, Arlind NOCAJ, Mennatallah EL-ASSADY, Michael BLUMENSCHEIN, Christin SCHÄTZLE, Miriam BUTT, Daniel A. KEIM, Ulrik BRANDES, Daniel WEISKOPF, 2016. Generative Data Models for Validation and Evaluation of Visualization Techniques. BELIV Workshop 2016. Baltimore, MD, USA, 24. Okt. 2016 - 24. Okt. 2016. In: BELIV '16 : Proceedings of the Sixth Workshop on Beyond Time and Errors on Novel Evaluation Methods for Visualization. New York: ACM Press, 2016, pp. 112-124. ISBN 978-1-4503-4818-8. Available under: doi: 10.1145/2993901.2993907
BibTex
@inproceedings{Schulz2016Gener-37469,
  year={2016},
  doi={10.1145/2993901.2993907},
  title={Generative Data Models for Validation and Evaluation of Visualization Techniques},
  isbn={978-1-4503-4818-8},
  publisher={ACM Press},
  address={New York},
  booktitle={BELIV '16 : Proceedings of the Sixth Workshop on Beyond Time and Errors on Novel Evaluation Methods for Visualization},
  pages={112--124},
  author={Schulz, Christoph and Nocaj, Arlind and El-Assady, Mennatallah and Blumenschein, Michael and Schätzle, Christin and Butt, Miriam and Keim, Daniel A. and Brandes, Ulrik and Weiskopf, Daniel}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/37469">
    <dc:creator>Weiskopf, Daniel</dc:creator>
    <dc:contributor>Schulz, Christoph</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-16T07:54:41Z</dcterms:available>
    <dc:creator>Brandes, Ulrik</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/37469"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/>
    <dcterms:title>Generative Data Models for Validation and Evaluation of Visualization Techniques</dcterms:title>
    <dcterms:abstract xml:lang="eng">We argue that there is a need for substantially more research on the use of generative data models in the validation and evaluation of visualization techniques. For example, user studies will require the display of representative and uncon-founded visual stimuli, while algorithms will need functional coverage and assessable benchmarks. However, data is often collected in a semi-automatic fashion or entirely hand-picked, which obscures the view of generality, impairs availability, and potentially violates privacy. There are some sub-domains of visualization that use synthetic data in the sense of generative data models, whereas others work with real-world-based data sets and simulations. Depending on the visualization domain, many generative data models are "side projects" as part of an ad-hoc validation of a techniques paper and thus neither reusable nor general-purpose. We review existing work on popular data collections and generative data models in visualization to discuss the opportunities and consequences for technique validation, evaluation, and experiment design. We distill handling and future directions, and discuss how we can engineer generative data models and how visualization research could benefit from more and better use of generative data models.</dcterms:abstract>
    <dc:contributor>Schätzle, Christin</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/37469/1/Schulz_0-370172.pdf"/>
    <dc:creator>Butt, Miriam</dc:creator>
    <dc:contributor>Weiskopf, Daniel</dc:contributor>
    <dc:contributor>Brandes, Ulrik</dc:contributor>
    <dc:contributor>El-Assady, Mennatallah</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-16T07:54:41Z</dc:date>
    <dc:creator>Nocaj, Arlind</dc:creator>
    <dc:contributor>Butt, Miriam</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Schulz, Christoph</dc:creator>
    <dc:creator>Schätzle, Christin</dc:creator>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:issued>2016</dcterms:issued>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/37469/1/Schulz_0-370172.pdf"/>
    <dc:creator>El-Assady, Mennatallah</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Blumenschein, Michael</dc:creator>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Nocaj, Arlind</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Blumenschein, Michael</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen