Multi-Resolution Techniques for Visual Exploration of Large Time-Series Data

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2007
Autor:innen
Hao, Ming C.
Dayal, Umeshwar
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
EUROVIS 2007: Eurographics/IEEE VGTC Symposium on Visualization. 2007, pp. 27-34. Available under: doi: 10.2312/VisSym/EuroVis07/027-034
Zusammenfassung

Time series are a data type of utmost importance in many domains such as business management and service monitoring. We address the problem of visualizing large time-related data sets which are difficult to visualize effectively with standard techniques given the limitations of current display devices. We propose a framework for intelligent time- and data-dependent visual aggregation of data along multiple resolution levels. This idea leads to effective visualization support for long time-series data providing both focus and context. The basic idea of the technique is that either data-dependent or application-dependent, display space is allocated in proportion to the degree of interest of data subintervals, thereby (a) guiding the user in perceiving important information, and (b) freeing required display space to visualize all the data. The automatic part of the framework can accommodate any time series analysis algorithm yielding a numeric degree of interest scale. We apply our techniques on real-world data sets, compare it with the standard visualization approach, and conclude the usefulness and scalability of the approach.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
EUROVIS 2007, 23. Mai 2007 - 25. Mai 2007, Norrköping, Sweden
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690HAO, Ming C., Umeshwar DAYAL, Daniel A. KEIM, Tobias SCHRECK, 2007. Multi-Resolution Techniques for Visual Exploration of Large Time-Series Data. EUROVIS 2007. Norrköping, Sweden, 23. Mai 2007 - 25. Mai 2007. In: EUROVIS 2007: Eurographics/IEEE VGTC Symposium on Visualization. 2007, pp. 27-34. Available under: doi: 10.2312/VisSym/EuroVis07/027-034
BibTex
@inproceedings{Hao2007Multi-5571,
  year={2007},
  doi={10.2312/VisSym/EuroVis07/027-034},
  title={Multi-Resolution Techniques for Visual Exploration of Large Time-Series Data},
  booktitle={EUROVIS 2007: Eurographics/IEEE VGTC Symposium on Visualization},
  pages={27--34},
  author={Hao, Ming C. and Dayal, Umeshwar and Keim, Daniel A. and Schreck, Tobias}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5571">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Hao, Ming C.</dc:contributor>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dcterms:title>Multi-Resolution Techniques for Visual Exploration of Large Time-Series Data</dcterms:title>
    <dcterms:abstract xml:lang="eng">Time series are a data type of utmost importance in many domains such as business management and service monitoring. We address the problem of visualizing large time-related data sets which are difficult to visualize effectively with standard techniques given the limitations of current display devices. We propose a framework for intelligent time- and data-dependent visual aggregation of data along multiple resolution levels. This idea leads to effective visualization support for long time-series data providing both focus and context. The basic idea of the technique is that either data-dependent or application-dependent, display space is allocated in proportion to the degree of interest of data subintervals, thereby (a) guiding the user in perceiving important information, and (b) freeing required display space to visualize all the data. The automatic part of the framework can accommodate any time series analysis algorithm yielding a numeric degree of interest scale. We apply our techniques on real-world data sets, compare it with the standard visualization approach, and conclude the usefulness and scalability of the approach.</dcterms:abstract>
    <dc:creator>Hao, Ming C.</dc:creator>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:30Z</dcterms:available>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5571/1/Multi_Resolution_Techniques_for_Visual_Exploration_of_Large_Time_Series_Data.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5571/1/Multi_Resolution_Techniques_for_Visual_Exploration_of_Large_Time_Series_Data.pdf"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Dayal, Umeshwar</dc:creator>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dc:language>eng</dc:language>
    <dc:contributor>Dayal, Umeshwar</dc:contributor>
    <dc:format>application/pdf</dc:format>
    <dcterms:bibliographicCitation>First publ. in: EUROVIS 2007: Eurographics/IEEE VGTC Symposium on Visualization ; Norrköping, Sweden, May 23th-25th, 2007, pp. 27-34</dcterms:bibliographicCitation>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5571"/>
    <dcterms:issued>2007</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:30Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen