Multi-Resolution Techniques for Visual Exploration of Large Time-Series Data
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Time series are a data type of utmost importance in many domains such as business management and service monitoring. We address the problem of visualizing large time-related data sets which are difficult to visualize effectively with standard techniques given the limitations of current display devices. We propose a framework for intelligent time- and data-dependent visual aggregation of data along multiple resolution levels. This idea leads to effective visualization support for long time-series data providing both focus and context. The basic idea of the technique is that either data-dependent or application-dependent, display space is allocated in proportion to the degree of interest of data subintervals, thereby (a) guiding the user in perceiving important information, and (b) freeing required display space to visualize all the data. The automatic part of the framework can accommodate any time series analysis algorithm yielding a numeric degree of interest scale. We apply our techniques on real-world data sets, compare it with the standard visualization approach, and conclude the usefulness and scalability of the approach.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HAO, Ming C., Umeshwar DAYAL, Daniel A. KEIM, Tobias SCHRECK, 2007. Multi-Resolution Techniques for Visual Exploration of Large Time-Series Data. EUROVIS 2007. Norrköping, Sweden, 23. Mai 2007 - 25. Mai 2007. In: EUROVIS 2007: Eurographics/IEEE VGTC Symposium on Visualization. 2007, pp. 27-34. Available under: doi: 10.2312/VisSym/EuroVis07/027-034BibTex
@inproceedings{Hao2007Multi-5571, year={2007}, doi={10.2312/VisSym/EuroVis07/027-034}, title={Multi-Resolution Techniques for Visual Exploration of Large Time-Series Data}, booktitle={EUROVIS 2007: Eurographics/IEEE VGTC Symposium on Visualization}, pages={27--34}, author={Hao, Ming C. and Dayal, Umeshwar and Keim, Daniel A. and Schreck, Tobias} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5571"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Hao, Ming C.</dc:contributor> <dc:contributor>Schreck, Tobias</dc:contributor> <dcterms:title>Multi-Resolution Techniques for Visual Exploration of Large Time-Series Data</dcterms:title> <dcterms:abstract xml:lang="eng">Time series are a data type of utmost importance in many domains such as business management and service monitoring. We address the problem of visualizing large time-related data sets which are difficult to visualize effectively with standard techniques given the limitations of current display devices. We propose a framework for intelligent time- and data-dependent visual aggregation of data along multiple resolution levels. This idea leads to effective visualization support for long time-series data providing both focus and context. The basic idea of the technique is that either data-dependent or application-dependent, display space is allocated in proportion to the degree of interest of data subintervals, thereby (a) guiding the user in perceiving important information, and (b) freeing required display space to visualize all the data. The automatic part of the framework can accommodate any time series analysis algorithm yielding a numeric degree of interest scale. We apply our techniques on real-world data sets, compare it with the standard visualization approach, and conclude the usefulness and scalability of the approach.</dcterms:abstract> <dc:creator>Hao, Ming C.</dc:creator> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:30Z</dcterms:available> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5571/1/Multi_Resolution_Techniques_for_Visual_Exploration_of_Large_Time_Series_Data.pdf"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5571/1/Multi_Resolution_Techniques_for_Visual_Exploration_of_Large_Time_Series_Data.pdf"/> <dc:creator>Keim, Daniel A.</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Dayal, Umeshwar</dc:creator> <dc:creator>Schreck, Tobias</dc:creator> <dc:language>eng</dc:language> <dc:contributor>Dayal, Umeshwar</dc:contributor> <dc:format>application/pdf</dc:format> <dcterms:bibliographicCitation>First publ. in: EUROVIS 2007: Eurographics/IEEE VGTC Symposium on Visualization ; Norrköping, Sweden, May 23th-25th, 2007, pp. 27-34</dcterms:bibliographicCitation> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5571"/> <dcterms:issued>2007</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:30Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>