Visual Analytics for Supporting Conflict Resolution in Large Railway Networks
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Train operators are responsible for maintaining and following the schedule of large-scale railway transport systems. Disruptions to this schedule imply conflicts that occur when two trains are bound to use the same railway segment. It is upon the train operator to decide which train must go first to resolve the conflict. As the railway transport system is a large and complex network, the decision may have a high impact on the future schedule, further train delay, costs, and other performance indicators. Due to this complexity and the enormous amount of underlying data, machine learning models have proven to be useful. However, the automated models are not accessible to the train operators which results in a low trust in following their predictions. We propose a Visual Analytics solution for a decision support system to support the train operators in making an informed decision while providing access to the complex machine learning models. Different integrated, interactive views allow the train operator to explore the various impacts that a decision may have. Additionally, the user can compare various data-driven models which are structured by an experience-based model. We demonstrate a decision-making process in a use case highlighting how the different views are made use of by the train operator.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SCHLEGEL, Udo, Wolfgang JENTNER, Juri F. BUCHMÜLLER, Eren CAKMAK, Giuliano CASTIGLIA, Renzo CANEPA, Simone PETRALLI, Luca ONETO, Daniel A. KEIM, Davide ANGUITA, 2020. Visual Analytics for Supporting Conflict Resolution in Large Railway Networks. INNS Big Data and Deep Learning conference : INNSBDDL 2019. Sestri Levante, Italy, 18. Apr. 2019 - 19. Apr. 2019. In: ONETO, Luca, ed. and others. Recent Advances in Big Data and Deep Learning : Proceedings of the INNS Big Data and Deep Learning Conference, INNSBDDL2019. Cham: Springer, 2020, pp. 206-215. Proceedings of the International Neural Networks Society. 1. ISSN 2661-8141. eISSN 2661-815X. ISBN 978-3-030-16840-7. Available under: doi: 10.1007/978-3-030-16841-4_22BibTex
@inproceedings{Schlegel2020Visua-45762, year={2020}, doi={10.1007/978-3-030-16841-4_22}, title={Visual Analytics for Supporting Conflict Resolution in Large Railway Networks}, number={1}, isbn={978-3-030-16840-7}, issn={2661-8141}, publisher={Springer}, address={Cham}, series={Proceedings of the International Neural Networks Society}, booktitle={Recent Advances in Big Data and Deep Learning : Proceedings of the INNS Big Data and Deep Learning Conference, INNSBDDL2019}, pages={206--215}, editor={Oneto, Luca}, author={Schlegel, Udo and Jentner, Wolfgang and Buchmüller, Juri F. and Cakmak, Eren and Castiglia, Giuliano and Canepa, Renzo and Petralli, Simone and Oneto, Luca and Keim, Daniel A. and Anguita, Davide} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45762"> <dcterms:title>Visual Analytics for Supporting Conflict Resolution in Large Railway Networks</dcterms:title> <dc:contributor>Jentner, Wolfgang</dc:contributor> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Anguita, Davide</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Cakmak, Eren</dc:contributor> <dc:contributor>Oneto, Luca</dc:contributor> <dc:creator>Cakmak, Eren</dc:creator> <dc:contributor>Buchmüller, Juri F.</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-05-03T10:52:32Z</dcterms:available> <dc:rights>terms-of-use</dc:rights> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45762/1/Schlegel_2-1fs6tvtv96iu79.pdf"/> <dc:creator>Castiglia, Giuliano</dc:creator> <dc:creator>Jentner, Wolfgang</dc:creator> <dc:creator>Schlegel, Udo</dc:creator> <dc:contributor>Anguita, Davide</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Oneto, Luca</dc:creator> <dc:creator>Canepa, Renzo</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45762/1/Schlegel_2-1fs6tvtv96iu79.pdf"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:abstract xml:lang="eng">Train operators are responsible for maintaining and following the schedule of large-scale railway transport systems. Disruptions to this schedule imply conflicts that occur when two trains are bound to use the same railway segment. It is upon the train operator to decide which train must go first to resolve the conflict. As the railway transport system is a large and complex network, the decision may have a high impact on the future schedule, further train delay, costs, and other performance indicators. Due to this complexity and the enormous amount of underlying data, machine learning models have proven to be useful. However, the automated models are not accessible to the train operators which results in a low trust in following their predictions. We propose a Visual Analytics solution for a decision support system to support the train operators in making an informed decision while providing access to the complex machine learning models. Different integrated, interactive views allow the train operator to explore the various impacts that a decision may have. Additionally, the user can compare various data-driven models which are structured by an experience-based model. We demonstrate a decision-making process in a use case highlighting how the different views are made use of by the train operator.</dcterms:abstract> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45762"/> <dc:language>eng</dc:language> <dc:creator>Buchmüller, Juri F.</dc:creator> <dc:contributor>Castiglia, Giuliano</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:issued>2020</dcterms:issued> <dc:contributor>Canepa, Renzo</dc:contributor> <dc:contributor>Petralli, Simone</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-05-03T10:52:32Z</dc:date> <dc:contributor>Schlegel, Udo</dc:contributor> <dc:creator>Petralli, Simone</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>