Publikation:

Visual Analytics for Supporting Conflict Resolution in Large Railway Networks

Lade...
Vorschaubild

Dateien

Schlegel_2-1fs6tvtv96iu79.pdf
Schlegel_2-1fs6tvtv96iu79.pdfGröße: 217.1 KBDownloads: 298

Datum

2020

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

European Union (EU): 777596

Projekt

IN2DREAMS - INtelligent solutions 2ward the Development of Railway Energy and Asset Management Systems in Europe
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

ONETO, Luca, ed. and others. Recent Advances in Big Data and Deep Learning : Proceedings of the INNS Big Data and Deep Learning Conference, INNSBDDL2019. Cham: Springer, 2020, pp. 206-215. Proceedings of the International Neural Networks Society. 1. ISSN 2661-8141. eISSN 2661-815X. ISBN 978-3-030-16840-7. Available under: doi: 10.1007/978-3-030-16841-4_22

Zusammenfassung

Train operators are responsible for maintaining and following the schedule of large-scale railway transport systems. Disruptions to this schedule imply conflicts that occur when two trains are bound to use the same railway segment. It is upon the train operator to decide which train must go first to resolve the conflict. As the railway transport system is a large and complex network, the decision may have a high impact on the future schedule, further train delay, costs, and other performance indicators. Due to this complexity and the enormous amount of underlying data, machine learning models have proven to be useful. However, the automated models are not accessible to the train operators which results in a low trust in following their predictions. We propose a Visual Analytics solution for a decision support system to support the train operators in making an informed decision while providing access to the complex machine learning models. Different integrated, interactive views allow the train operator to explore the various impacts that a decision may have. Additionally, the user can compare various data-driven models which are structured by an experience-based model. We demonstrate a decision-making process in a use case highlighting how the different views are made use of by the train operator.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Visual and big data analytics, Decision support systems

Konferenz

INNS Big Data and Deep Learning conference : INNSBDDL 2019, 18. Apr. 2019 - 19. Apr. 2019, Sestri Levante, Italy
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SCHLEGEL, Udo, Wolfgang JENTNER, Juri F. BUCHMÜLLER, Eren CAKMAK, Giuliano CASTIGLIA, Renzo CANEPA, Simone PETRALLI, Luca ONETO, Daniel A. KEIM, Davide ANGUITA, 2020. Visual Analytics for Supporting Conflict Resolution in Large Railway Networks. INNS Big Data and Deep Learning conference : INNSBDDL 2019. Sestri Levante, Italy, 18. Apr. 2019 - 19. Apr. 2019. In: ONETO, Luca, ed. and others. Recent Advances in Big Data and Deep Learning : Proceedings of the INNS Big Data and Deep Learning Conference, INNSBDDL2019. Cham: Springer, 2020, pp. 206-215. Proceedings of the International Neural Networks Society. 1. ISSN 2661-8141. eISSN 2661-815X. ISBN 978-3-030-16840-7. Available under: doi: 10.1007/978-3-030-16841-4_22
BibTex
@inproceedings{Schlegel2020Visua-45762,
  year={2020},
  doi={10.1007/978-3-030-16841-4_22},
  title={Visual Analytics for Supporting Conflict Resolution in Large Railway Networks},
  number={1},
  isbn={978-3-030-16840-7},
  issn={2661-8141},
  publisher={Springer},
  address={Cham},
  series={Proceedings of the International Neural Networks Society},
  booktitle={Recent Advances in Big Data and Deep Learning : Proceedings of the INNS Big Data and Deep Learning Conference, INNSBDDL2019},
  pages={206--215},
  editor={Oneto, Luca},
  author={Schlegel, Udo and Jentner, Wolfgang and Buchmüller, Juri F. and Cakmak, Eren and Castiglia, Giuliano and Canepa, Renzo and Petralli, Simone and Oneto, Luca and Keim, Daniel A. and Anguita, Davide}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45762">
    <dcterms:title>Visual Analytics for Supporting Conflict Resolution in Large Railway Networks</dcterms:title>
    <dc:contributor>Jentner, Wolfgang</dc:contributor>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Anguita, Davide</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Cakmak, Eren</dc:contributor>
    <dc:contributor>Oneto, Luca</dc:contributor>
    <dc:creator>Cakmak, Eren</dc:creator>
    <dc:contributor>Buchmüller, Juri F.</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-05-03T10:52:32Z</dcterms:available>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45762/1/Schlegel_2-1fs6tvtv96iu79.pdf"/>
    <dc:creator>Castiglia, Giuliano</dc:creator>
    <dc:creator>Jentner, Wolfgang</dc:creator>
    <dc:creator>Schlegel, Udo</dc:creator>
    <dc:contributor>Anguita, Davide</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Oneto, Luca</dc:creator>
    <dc:creator>Canepa, Renzo</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45762/1/Schlegel_2-1fs6tvtv96iu79.pdf"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:abstract xml:lang="eng">Train operators are responsible for maintaining and following the schedule of large-scale railway transport systems. Disruptions to this schedule imply conflicts that occur when two trains are bound to use the same railway segment. It is upon the train operator to decide which train must go first to resolve the conflict. As the railway transport system is a large and complex network, the decision may have a high impact on the future schedule, further train delay, costs, and other performance indicators. Due to this complexity and the enormous amount of underlying data, machine learning models have proven to be useful. However, the automated models are not accessible to the train operators which results in a low trust in following their predictions. We propose a Visual Analytics solution for a decision support system to support the train operators in making an informed decision while providing access to the complex machine learning models. Different integrated, interactive views allow the train operator to explore the various impacts that a decision may have. Additionally, the user can compare various data-driven models which are structured by an experience-based model. We demonstrate a decision-making process in a use case highlighting how the different views are made use of by the train operator.</dcterms:abstract>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45762"/>
    <dc:language>eng</dc:language>
    <dc:creator>Buchmüller, Juri F.</dc:creator>
    <dc:contributor>Castiglia, Giuliano</dc:contributor>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dcterms:issued>2020</dcterms:issued>
    <dc:contributor>Canepa, Renzo</dc:contributor>
    <dc:contributor>Petralli, Simone</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-05-03T10:52:32Z</dc:date>
    <dc:contributor>Schlegel, Udo</dc:contributor>
    <dc:creator>Petralli, Simone</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen