Publikation:

Lower Order Terms for the One-Level Density of Elliptic Curve L-Functions

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2009

Autor:innen

Keating, Jon P.
Snaith, Nina C.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Number Theory. 2009, 129(12), pp. 2883-2902. ISSN 0022-314X. eISSN 1096-1658. Available under: doi: 10.1016/j.jnt.2008.12.008

Zusammenfassung

It is believed that, in the limit as the conductor tends to infinity, correlations between the zeros of elliptic curve L-functions averaged within families follow the distribution laws of the eigenvalues of random matrices drawn from the orthogonal group. For test functions with restricted support, this is known to be the true for the one- and two-level densities of zeros within the families studied to date. However, for finite conductor Miller's experimental data reveal an interesting discrepancy from these limiting results. Here we use the L-functions ratios conjectures to calculate the 1-level density for the family of even quadratic twists of an elliptic curve L-function for large but finite conductor. This gives a formula for the leading and lower order terms up to an error term that is conjectured to be significantly smaller. The lower order terms explain many of the features of the zero statistics for relatively small conductor and model the very slow convergence to the infinite conductor limit. However, our main observation is that they do not capture the behaviour of zeros in the important region very close to the critical point and so do not explain Miller's discrepancy. This therefore implies that a more accurate model for statistics near to this point needs to be developed.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HUYNH, Duc K., Jon P. KEATING, Nina C. SNAITH, 2009. Lower Order Terms for the One-Level Density of Elliptic Curve L-Functions. In: Journal of Number Theory. 2009, 129(12), pp. 2883-2902. ISSN 0022-314X. eISSN 1096-1658. Available under: doi: 10.1016/j.jnt.2008.12.008
BibTex
@article{Huynh2009Lower-25392,
  year={2009},
  doi={10.1016/j.jnt.2008.12.008},
  title={Lower Order Terms for the One-Level Density of Elliptic Curve L-Functions},
  number={12},
  volume={129},
  issn={0022-314X},
  journal={Journal of Number Theory},
  pages={2883--2902},
  author={Huynh, Duc K. and Keating, Jon P. and Snaith, Nina C.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/25392">
    <dc:contributor>Keating, Jon P.</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-12-10T10:24:36Z</dc:date>
    <dc:creator>Snaith, Nina C.</dc:creator>
    <dc:contributor>Snaith, Nina C.</dc:contributor>
    <dc:creator>Keating, Jon P.</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:issued>2009</dcterms:issued>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Huynh, Duc K.</dc:creator>
    <dcterms:bibliographicCitation>Journal of Number Theory ; 129 (2009), 12. - S. 2883-2902</dcterms:bibliographicCitation>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">It is believed that, in the limit as the conductor tends to infinity, correlations between the zeros of elliptic curve L-functions averaged within families follow the distribution laws of the eigenvalues of random matrices drawn from the orthogonal group. For test functions with restricted support, this is known to be the true for the one- and two-level densities of zeros within the families studied to date. However, for finite conductor Miller's experimental data reveal an interesting discrepancy from these limiting results. Here we use the L-functions ratios conjectures to calculate the 1-level density for the family of even quadratic twists of an elliptic curve L-function for large but finite conductor. This gives a formula for the leading and lower order terms up to an error term that is conjectured to be significantly smaller. The lower order terms explain many of the features of the zero statistics for relatively small conductor and model the very slow convergence to the infinite conductor limit. However, our main observation is that they do not capture the behaviour of zeros in the important region very close to the critical point and so do not explain Miller's discrepancy. This therefore implies that a more accurate model for statistics near to this point needs to be developed.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Huynh, Duc K.</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-12-10T10:24:36Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/25392"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Lower Order Terms for the One-Level Density of Elliptic Curve L-Functions</dcterms:title>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen