Quasianalytic Ilyashenko algebras
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2018
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Sammlungen
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Canadian Journal of Mathematics. 2018, 70(1), pp. 218-240. ISSN 0008-414X. eISSN 1496-4279. Available under: doi: 10.4153/CJM-2016-048-x
Zusammenfassung
I construct a quasianalytic field F of germs at +∞ of real functions with logarithmic generalized power series as asymptotic expansions, such that F is closed under differentiation and log-composition; in particular, F is a Hardy field. Moreover, the field F o (−log) of germs at 0+ contains all transition maps of hyperbolic saddles of planar real analytic vector fields.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
generalized series expansion, quasianalyticity, transition map
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
SPEISSEGGER, Patrick, 2018. Quasianalytic Ilyashenko algebras. In: Canadian Journal of Mathematics. 2018, 70(1), pp. 218-240. ISSN 0008-414X. eISSN 1496-4279. Available under: doi: 10.4153/CJM-2016-048-xBibTex
@article{Speissegger2018-02-01Quasi-40969, year={2018}, doi={10.4153/CJM-2016-048-x}, title={Quasianalytic Ilyashenko algebras}, number={1}, volume={70}, issn={0008-414X}, journal={Canadian Journal of Mathematics}, pages={218--240}, author={Speissegger, Patrick} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40969"> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40969"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dcterms:issued>2018-02-01</dcterms:issued> <dc:language>eng</dc:language> <dc:contributor>Speissegger, Patrick</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-12-19T15:15:33Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-12-19T15:15:33Z</dc:date> <dcterms:title>Quasianalytic Ilyashenko algebras</dcterms:title> <dc:creator>Speissegger, Patrick</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">I construct a quasianalytic field F of germs at +∞ of real functions with logarithmic generalized power series as asymptotic expansions, such that F is closed under differentiation and log-composition; in particular, F is a Hardy field. Moreover, the field F o (−log) of germs at 0<sup>+</sup> contains all transition maps of hyperbolic saddles of planar real analytic vector fields.</dcterms:abstract> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja