Publikation:

Visual Analytics Using Density Equalizing Geographic Distortion

Lade...
Vorschaubild

Dateien

a19.pdf
a19.pdfGröße: 2.61 MBDownloads: 80

Datum

2008

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

Geospatial Visual Analytics Workshop at Giscience (23 September 2008, Utah). 2008

Zusammenfassung

Visualizing large geo-demographical data sets using pixel-based techniques involves mapping the geo-spatial dimensions of a data point to screen coordinates and appropriately encoding its statistical value by color. Analysis of such data is a great challenge. General tasks involve clustering, categorization and searching for patterns of interest for sociological or economic research. Available visual encodings and screen space limitations lead to over-plotting and hiding of patterns and clusters in densely populated areas, while sparsely populated areas waste space and draw the attention away from areas of interest. In the current paper, two new approaches (RadialScale and AngularScale) are introduced to create density-equalized maps, while preserving recognizable features and neighborhoods in the visualization. The approaches apply a multi-scaling technique based on local features of the data described as local minima and maxima of point density. Consequently, scaling is conducted several times around these features, thus leading to more effective distortions. Results are applied and discussed on two applications. Evaluation shows to outperform traditional techniques for homogeneity of distortion and efficient use of space.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Geospatial Visual Analytics Workshop at Giscience, 23. Sept. 2008, Utah
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BAK, Peter, Daniel A. KEIM, Matthias SCHÄFER, Andreas STOFFEL, Itzhak OMER, 2008. Visual Analytics Using Density Equalizing Geographic Distortion. Geospatial Visual Analytics Workshop at Giscience. Utah, 23. Sept. 2008. In: Geospatial Visual Analytics Workshop at Giscience (23 September 2008, Utah). 2008
BibTex
@inproceedings{Bak2008Visua-5503,
  year={2008},
  title={Visual Analytics Using Density Equalizing Geographic Distortion},
  booktitle={Geospatial Visual Analytics Workshop at Giscience (23 September 2008, Utah)},
  author={Bak, Peter and Keim, Daniel A. and Schäfer, Matthias and Stoffel, Andreas and Omer, Itzhak}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5503">
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:contributor>Schäfer, Matthias</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5503"/>
    <dc:format>application/pdf</dc:format>
    <dcterms:title>Visual Analytics Using Density Equalizing Geographic Distortion</dcterms:title>
    <dc:language>eng</dc:language>
    <dc:rights>terms-of-use</dc:rights>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:59Z</dc:date>
    <dc:creator>Bak, Peter</dc:creator>
    <dc:creator>Schäfer, Matthias</dc:creator>
    <dcterms:issued>2008</dcterms:issued>
    <dc:contributor>Stoffel, Andreas</dc:contributor>
    <dc:creator>Stoffel, Andreas</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5503/1/a19.pdf"/>
    <dc:creator>Omer, Itzhak</dc:creator>
    <dc:contributor>Bak, Peter</dc:contributor>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5503/1/a19.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Omer, Itzhak</dc:contributor>
    <dcterms:bibliographicCitation>Paper first publ. at: Geospatial Visual Analytics Workshop at Giscience (23 September 2008, Utah)</dcterms:bibliographicCitation>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:59Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">Visualizing large geo-demographical data sets using pixel-based techniques involves mapping the geo-spatial dimensions of a data point to screen coordinates and appropriately encoding its statistical value by color. Analysis of such data is a great challenge. General tasks involve clustering, categorization and searching for patterns of interest for sociological or economic research. Available visual encodings and screen space limitations lead to over-plotting and hiding of patterns and clusters in densely populated areas, while sparsely populated areas waste space and draw the attention away from areas of interest. In the current paper, two new approaches (RadialScale and AngularScale) are introduced to create density-equalized maps, while preserving recognizable features and neighborhoods in the visualization. The approaches apply a multi-scaling technique based on local features of the data described as local minima and maxima of point density. Consequently, scaling is conducted several times around these features, thus leading to more effective distortions. Results are applied and discussed on two applications. Evaluation shows to outperform traditional techniques for homogeneity of distortion and efficient use of space.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen