Publikation: Visual Analytics Using Density Equalizing Geographic Distortion
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Visualizing large geo-demographical data sets using pixel-based techniques involves mapping the geo-spatial dimensions of a data point to screen coordinates and appropriately encoding its statistical value by color. Analysis of such data is a great challenge. General tasks involve clustering, categorization and searching for patterns of interest for sociological or economic research. Available visual encodings and screen space limitations lead to over-plotting and hiding of patterns and clusters in densely populated areas, while sparsely populated areas waste space and draw the attention away from areas of interest. In the current paper, two new approaches (RadialScale and AngularScale) are introduced to create density-equalized maps, while preserving recognizable features and neighborhoods in the visualization. The approaches apply a multi-scaling technique based on local features of the data described as local minima and maxima of point density. Consequently, scaling is conducted several times around these features, thus leading to more effective distortions. Results are applied and discussed on two applications. Evaluation shows to outperform traditional techniques for homogeneity of distortion and efficient use of space.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BAK, Peter, Daniel A. KEIM, Matthias SCHÄFER, Andreas STOFFEL, Itzhak OMER, 2008. Visual Analytics Using Density Equalizing Geographic Distortion. Geospatial Visual Analytics Workshop at Giscience. Utah, 23. Sept. 2008. In: Geospatial Visual Analytics Workshop at Giscience (23 September 2008, Utah). 2008BibTex
@inproceedings{Bak2008Visua-5503, year={2008}, title={Visual Analytics Using Density Equalizing Geographic Distortion}, booktitle={Geospatial Visual Analytics Workshop at Giscience (23 September 2008, Utah)}, author={Bak, Peter and Keim, Daniel A. and Schäfer, Matthias and Stoffel, Andreas and Omer, Itzhak} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5503"> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:contributor>Schäfer, Matthias</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5503"/> <dc:format>application/pdf</dc:format> <dcterms:title>Visual Analytics Using Density Equalizing Geographic Distortion</dcterms:title> <dc:language>eng</dc:language> <dc:rights>terms-of-use</dc:rights> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:59Z</dc:date> <dc:creator>Bak, Peter</dc:creator> <dc:creator>Schäfer, Matthias</dc:creator> <dcterms:issued>2008</dcterms:issued> <dc:contributor>Stoffel, Andreas</dc:contributor> <dc:creator>Stoffel, Andreas</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5503/1/a19.pdf"/> <dc:creator>Omer, Itzhak</dc:creator> <dc:contributor>Bak, Peter</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5503/1/a19.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Omer, Itzhak</dc:contributor> <dcterms:bibliographicCitation>Paper first publ. at: Geospatial Visual Analytics Workshop at Giscience (23 September 2008, Utah)</dcterms:bibliographicCitation> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:59Z</dcterms:available> <dcterms:abstract xml:lang="eng">Visualizing large geo-demographical data sets using pixel-based techniques involves mapping the geo-spatial dimensions of a data point to screen coordinates and appropriately encoding its statistical value by color. Analysis of such data is a great challenge. General tasks involve clustering, categorization and searching for patterns of interest for sociological or economic research. Available visual encodings and screen space limitations lead to over-plotting and hiding of patterns and clusters in densely populated areas, while sparsely populated areas waste space and draw the attention away from areas of interest. In the current paper, two new approaches (RadialScale and AngularScale) are introduced to create density-equalized maps, while preserving recognizable features and neighborhoods in the visualization. The approaches apply a multi-scaling technique based on local features of the data described as local minima and maxima of point density. Consequently, scaling is conducted several times around these features, thus leading to more effective distortions. Results are applied and discussed on two applications. Evaluation shows to outperform traditional techniques for homogeneity of distortion and efficient use of space.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> </rdf:Description> </rdf:RDF>