Versatile surface modification of aerogels by click chemistry as an approach to generate model systems for CO2 adsorption features in amine-containing organosilica

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2020
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Microporous and Mesoporous Materials. Elsevier. 2020, 294, 109879. ISSN 1387-1811. eISSN 1873-3093. Available under: doi: 10.1016/j.micromeso.2019.109879
Zusammenfassung

The conversion of waste into valuable products is most appealing in the case of CO2, a molecule which is produced in mass by our society and industries. Because its atmospheric concentration correlates to climate change and the green-house effect, major efforts are on the way to reduce the emission of CO2. One promising strategy is the separation of CO2 from the gas-phase (e.g. flue gases) by solid-adsorbents containing amine moieties. The synthesis of tailor-made adsorbents with changing surface properties remains a challenge. This work presents a click chemistry approach that enables the easy modification of organosilica materials with functional groups that can be used as model systems to study the influence of surface chemistry on CO2 adsorption. As an example, the modification of the materials with primary amines is discussed in detail but furthermore the approach offers the possibility to tailor the surface properties using any desired functional group. The increased affinity of the used copper catalyst introduced some difficulties but we were able to remove all remains of copper. With this approach, we were able to synthesize materials with different degrees of functionalization up to 80%. This approach for the development of new carbon capture model systems offers high functionalization combined with the flexibility of a post-functionalization approach. Thus, surface chemistry can be tailored to study the influence of surface chemistry on CO2 adsorption. As an example for the model character of our materials, we could show that the heat of adsorption can be tuned by systematically varying the degree of amine functionalization.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
540 Chemie
Schlagwörter
Amine-functionalized materials; Organosilica; Aerogels; Functional gradients; Carbon capture model systems; CO2 adsorption; Click chemistry
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690KLINKENBERG, Nele, Alexander KLAIBER, Magdalena MÜLLER, Sebastian POLARZ, 2020. Versatile surface modification of aerogels by click chemistry as an approach to generate model systems for CO2 adsorption features in amine-containing organosilica. In: Microporous and Mesoporous Materials. Elsevier. 2020, 294, 109879. ISSN 1387-1811. eISSN 1873-3093. Available under: doi: 10.1016/j.micromeso.2019.109879
BibTex
@article{Klinkenberg2020-03Versa-47530,
  year={2020},
  doi={10.1016/j.micromeso.2019.109879},
  title={Versatile surface modification of aerogels by click chemistry as an approach to generate model systems for CO<sub>2</sub> adsorption features in amine-containing organosilica},
  volume={294},
  issn={1387-1811},
  journal={Microporous and Mesoporous Materials},
  author={Klinkenberg, Nele and Klaiber, Alexander and Müller, Magdalena and Polarz, Sebastian},
  note={Article Number: 109879}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/47530">
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2020-03</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-11-18T10:48:09Z</dcterms:available>
    <dc:contributor>Müller, Magdalena</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dc:creator>Müller, Magdalena</dc:creator>
    <dc:contributor>Klinkenberg, Nele</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dc:contributor>Klaiber, Alexander</dc:contributor>
    <dcterms:abstract xml:lang="eng">The conversion of waste into valuable products is most appealing in the case of CO&lt;sub&gt;2&lt;/sub&gt;, a molecule which is produced in mass by our society and industries. Because its atmospheric concentration correlates to climate change and the green-house effect, major efforts are on the way to reduce the emission of CO&lt;sub&gt;2&lt;/sub&gt;. One promising strategy is the separation of CO&lt;sub&gt;2&lt;/sub&gt; from the gas-phase (e.g. flue gases) by solid-adsorbents containing amine moieties. The synthesis of tailor-made adsorbents with changing surface properties remains a challenge. This work presents a click chemistry approach that enables the easy modification of organosilica materials with functional groups that can be used as model systems to study the influence of surface chemistry on CO&lt;sub&gt;2&lt;/sub&gt; adsorption. As an example, the modification of the materials with primary amines is discussed in detail but furthermore the approach offers the possibility to tailor the surface properties using any desired functional group. The increased affinity of the used copper catalyst introduced some difficulties but we were able to remove all remains of copper. With this approach, we were able to synthesize materials with different degrees of functionalization up to 80%. This approach for the development of new carbon capture model systems offers high functionalization combined with the flexibility of a post-functionalization approach. Thus, surface chemistry can be tailored to study the influence of surface chemistry on CO&lt;sub&gt;2&lt;/sub&gt; adsorption. As an example for the model character of our materials, we could show that the heat of adsorption can be tuned by systematically varying the degree of amine functionalization.</dcterms:abstract>
    <dcterms:title>Versatile surface modification of aerogels by click chemistry as an approach to generate model systems for CO&lt;sub&gt;2&lt;/sub&gt; adsorption features in amine-containing organosilica</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/47530"/>
    <dc:creator>Polarz, Sebastian</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-11-18T10:48:09Z</dc:date>
    <dc:creator>Klaiber, Alexander</dc:creator>
    <dc:contributor>Polarz, Sebastian</dc:contributor>
    <dc:creator>Klinkenberg, Nele</dc:creator>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen